Warm Up Write on your
own paper.

1. Find the slope of the line between the points $(14,10)$ and $(-7,1)$
and then go on to find the equation in $y=m x+b$ format
2.

$(14,10)$ and $(-7,1)$
slope

$$
m=\frac{10-1}{14--7}
$$

$$
\frac{a}{21}=\frac{a_{3}}{21_{7}}
$$

$$
=\frac{3}{7}
$$

find b using

$$
\begin{aligned}
& y=m_{1} x+b \\
& \left.1=\frac{3}{1-1}+1\right)+b
\end{aligned}
$$

$$
1=-3+b
$$

2. Repeat for the points $(8,-1)$ and $(2,7)$

$$
\begin{aligned}
& \text { 2. }(8,-1) \text { and }(2,7) \\
& m=\frac{-1-7}{8-2} \\
& m=\frac{-8}{6} \\
& m=-\frac{4}{3} \\
& 7=-\frac{8}{3} \cdot(2)+b \\
& 7=-8 \\
& 21=-8+3 b \\
& 29=3 b \\
& \frac{29}{3}=b \\
& y=-\frac{4}{3} x+\frac{29}{3}
\end{aligned}
$$

HW Questions?

84 find intersection between

$$
\begin{aligned}
& f(x)=\frac{2 x^{2}-3 x+4}{} \text { and } g(x)=x^{2}+5 x-3 \\
& 2 x^{2}-3 x+4=x^{2}+5 x-3 \\
& x^{2}-8 x+7=0 \\
& (x-7)(x-1)=0 \\
& 0, b=0 \\
& x-7=0 \quad x-1=0 \\
& x=7 \quad x=1
\end{aligned}
$$

$86 f(x)=\sqrt{x}-2$

x	y
0	-2

domain:

$$
\text { a } y=3 x-6 \quad \text { b } \quad y=2 x^{2}+4
$$

d)

$$
y=2 x^{2}-4 \text { e) } \quad y=(x-5)^{2}
$$

91

$$
\begin{aligned}
& \text { A) } \begin{aligned}
& y=m x \\
&-b+b \\
&-b
\end{aligned} \\
& y-b=m x \\
& x=\frac{y-b}{m} \\
& \bigcirc \\
& x=\frac{y}{m}-\frac{b}{y}
\end{aligned}
$$

B) $\frac{A}{\pi}=\frac{\pi r^{2}}{\frac{\pi}{r}}$
c)

$$
r^{2}=\frac{A}{\pi}
$$

$$
\begin{gathered}
\frac{V}{L H}=\frac{V L^{2} H}{V_{2}-H} \\
W=\frac{V}{L H}
\end{gathered}
$$

d) $2 x+\frac{1}{y}=3$
$93 \quad y=3 x+15 \quad y=3-3 x$

c) Write an equation that does not contain y and solve it for x.

$$
\begin{aligned}
3 x+15 & =3-3 x \\
& (-2)
\end{aligned}
$$

d) Use the x-value you found to find the corresponding y-value
94) ft sub $\rightarrow 8$ pounds 12 pounder would be length
$95 \quad h(x)=x^{2}-5$
find x-intercepts

97 MATCHING

a. $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \nwarrow$
b. $\frac{\sin A}{a}=\frac{\sin B}{b}$

c. $c^{2}=a^{2}+b^{2}$
d. $c^{2}=a^{2}+b^{2}-2 a b \cos C$

1. Law of Cosines

2. Law of Sines
3. Pythagorean Theorem
4. Quadratic Formula

Assembly
Gym

i
backpacks

Learning is always easier if one can initially make a connection to what you already know

Aim
What is common with all linear functions?
Is a function linear or not?

$$
\begin{aligned}
& y=m x+b \quad y=3 x+2 \\
& x \text { and } y ? \quad m \text { and } b \\
& \text { inputs outpuls } \quad y \quad \text { constants }
\end{aligned}
$$

What effect does m have? b ?

Parameters

$$
y=m x+b \quad y=\frac{1}{x-h} \quad y=a x^{2}+b x+c
$$

\square
Parameters

$$
y=\operatorname{m}_{\uparrow} x+b_{\uparrow} \quad y=\frac{1}{x-h} \quad y=\underset{\tau}{a} x^{2}+\underset{\tau}{b x}+\underset{\tau}{c}
$$

What do all functions
in the family
have in common?

$$
3 x+2 y=5
$$

a) decide as a group if it is linear
b) If linear, find the equation.

With each situation:

(1) -- start by writing down the given
information (or briefly abbreviating the info if in paragraph form).
-- Discuss how you decided if it was linear or not.
(2) -- If linear, write the linear equation. If not, move to the next question.

b.

Killer Fried Chickens charges $\$ 7.00$ for a basic bucket of chicken and $\$ 0.50$ for each additional piece. The input is the number of extra pieces of chicken ordered, and the output is the total cost of the order.
c.

x	y
10	0
5	5
3	7
2	8
1	9
0	10

$$
y=-1 x+10
$$

d.

e. James planted a bush in his yard. The year he planted it, the bush produced 17 flowers. Each year, the branches of the bush split, so the number of flowers doubles. The input is the year after planting, and the output is the number of flowers.

f. | x | y |
| :---: | :---: |
| 0 | -7 |
| 2 | -2 |
| 4 | 3 |
| 6 | 8 |
| 8 | 13 |

 X \square

(1)

How does someone land from a wingsuit flight?

draw sketches of what you see on your calculator, one sketch for part a and one sketch for part b

$$
\text { a. } \begin{aligned}
& x+2 y=10 \\
& y=-\frac{1}{2} x+3 \\
& -4 y=2 x+8 \\
& y=-\frac{1}{2} x
\end{aligned}
$$

b. $5 x+y=-3$
$y=-\frac{1}{2} x-3$
$3 x-4 y=12 \leftarrow$
$5 y-2 x=-15$

x	y		
1	0.5		
4	-7		
10	-22		
15	-34.5	\quad	
:---			

Decide if the relationship is linear. -0.5

Assignment
Worksheet 1.2.3
(\#5) $x^{2}+3 x-3=0$

