If absent, you will be excused from it provided your absence has been excused.

If you were absent last class :
You already checked my blog so you know that we had an Exit Ticket the last class.


$$
\frac{L C Q}{\sqrt{L C Q \cdot s}}
$$



(1) Show how to find the $x$ - and $y$-axis intercepts algebraically.

When done you can check with your calculator.

set $x=0$

$$
\begin{aligned}
y & =(0)^{5}-18 \\
& =-18
\end{aligned}
$$



$$
x=\sqrt[5]{18}
$$

Set $y=0$ $\rightarrow^{y}=$

$$
x^{5}-18=0
$$

$$
x^{5}=18
$$



$$
(\sqrt[5]{18}, 0)
$$

$$
\begin{gathered}
=-18 \\
(0,-18)
\end{gathered}
$$



$$
(1.78,0)
$$

(3) Show how to find the $y$-axis intercept AND $x$-axis intercepts) algebraically of the following function. when you are done, you can check with your calculator.

$$
y=x^{5}-18
$$

One has to be careful when factoring quadratic trinomials into two binomials when there is a common factor. In fact, the box method doesn't quite work the same if you do not factor out the greatest common factor first.

Factor: $12 x^{2}+22 x+6$


$$
2(2 x+3)(3 x+1)
$$

$\square$
Factor: $12 x^{2}+22 x+6$
$=2(x)$

Factor: $12 x^{2}+22 x+6=()^{\text {< } 9001}$

$$
\begin{aligned}
& 2\left(6 x^{2}+11 x+3\right) \\
= & 2(2 x+3)(3 x+1)
\end{aligned}
$$

- | $2 x$ | 3 |
| :---: | :---: |
| $6 x^{2}$ | $9 x$ |
| $2 x$ | 3 |



Use SQR -(CAH) TOA to solve for missing
(4)


$$
\begin{aligned}
\cos (33) & =\frac{x}{100} \\
x & =100 \cdot \cos (33) \\
& 83.87
\end{aligned}
$$

(5)

$n \cdot \sin \left(25^{\circ}\right)=\frac{50}{H} \pi$
$n \cdot \operatorname{Sin}(25)=50$

$$
n=\frac{50}{\sin (27)}
$$

$$
\begin{aligned}
\frac{\sin (25)}{1} & =\frac{50}{n} \\
\frac{n}{1} & =\frac{50}{\sin (25)} \\
n & =118.31
\end{aligned}
$$

(6)
 find angle $A$ Soh Can Toa

$$
\begin{aligned}
\tan (A) & =\frac{17}{30} \\
A & =\tan ^{-1}\left(\frac{17}{30}\right) \\
& =29.54^{\circ}
\end{aligned}
$$

引

$$
\begin{aligned}
& 4.1 x=9.5 x+23.7 \\
& -4.1 x=-4.1 x \\
& 5.4 x=23.7 \\
& 0=\$ .4 x+23.7
\end{aligned}
$$

$$
\begin{gathered}
52 b \frac{5}{\frac{5}{15}(1)} x-2(x)=\frac{28(13)}{25}-(0.7 x) 25 \\
5 x-50=13-17.5 x
\end{gathered}
$$

48a) $\quad x^{2}-8 x+15=0$
b) $2 x^{2}-5 x-6=0$

$$
\begin{aligned}
& a=2 \\
& b=-5 \\
& c=-6
\end{aligned}
$$

$$
\frac{1}{5} x-2=\frac{13}{25}-\frac{7}{10} x
$$

## Goals and tomorrow

Optimize the design of an Open Top Box
(2 day investigation)

Maximize the Volume of a Box

## Demo of an

 Open Top Box


Tin Box with Maximum Volume


NOTES Start from a flat rectangular piece of metal.



What should the height of the finished box be in order to maximize the volume ????

Each pair will be given a paper with dimensions

$$
22 \mathrm{~cm} \times 16 \mathrm{~cm}
$$

Each group will cut out and make a box, however, everyone will have a different cut out size

$$
1,2,3,4,5,6,7,8
$$

A) Cut, fold, tape your box
B) Which one will give us the largest volume?

Each person should now calculate the volume of their own.

Purple $|\times|$ squares cut out
White $2 \times 2$
Cream $3 \times 3$
Blue $\quad 4 \times 4$
Brown $5 \times 5$
Light Pink $6 \times 6$
Dark Pink $7 \times 7$


| $(\mathrm{ut}$ out <br> $(\mathrm{cm})$ | Volume $\left(\mathrm{cm}^{3}\right)$ | $\operatorname{Per} 2$ |
| :---: | :--- | :--- |
| 0 | 0 |  |
| 1 | 280 |  |
| 2 | 432 |  |
| 3 | 480 |  |
| 4 | 418 |  |
| 5 | 360 |  |
| 6 | 240 |  |
| 7 | 112 |  |
| 8 | 0 |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |


 Sines
 Cosines


AA
AsA

GAS
SSS
$\qquad$ Per $\qquad$
Alg 1 / Geometry --- Reference Sheet for Algebra 2 Foundations

Geometry
in right triangles: Can use both the Pythagorean Theorem $a^{2}+b^{2}=c^{2}$ if only dealing with sides

$$
\text { or Soh-Cah-Toa sine } A=\frac{\text { opposite }}{\text { hypotenuse }}, \text { cosine } A=\frac{\text { adjacent }}{\text { hypotenuse }}, \text { tangent } A=\frac{\text { opposite }}{\text { hypotenuse }}
$$ ASS

ASA SSA
Any right triangle: Law of Sines $\frac{\sin A}{a}=\frac{\sin B}{b}$ where $a$ is the side length opposite angle A, etc.

Law of Cosines $c^{2}=a^{2}+b^{2}-2 a b \cdot \cos C$ where $c$ is the side length opposite angle C PAS SSS
ght triangle: Law of Sines $\frac{\sin A}{a}=\frac{\sin B}{b}$ where $a$ is the si Law of Cosines $c^{2}=a^{2}+b^{2}-2 a b \cdot \cos C$ whert

(2)



One has to be careful when factoring quadratic trinomial into two binomials When there is a common factor. In fact, the box method doesn't quite work the same if you do not factor out the greatest common factor first.

Factor: $12 x^{2}+22 x+6=$ (

 $2\left(6 x^{2}+11 x+3\right)$
$=2(x)$

 Hopefully you have already either written or pasted into your Algebra log, the Quadratic Formula. Use it to solve the following quadratic equation.

$$
\begin{aligned}
& a=3 \\
& b=-2 \\
& c=-5 \\
& 3 x^{2}-2 x-5=0 \\
& X=\frac{-\left(1 \pm \sqrt{()^{2}-4()()}\right.}{2()}=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(3)(-5)}}{2(3)}
\end{aligned}
$$

$$
\begin{array}{r}
3 x^{2}-2 x-5=0 \quad a=3 \quad b=-2 \quad c=-5 \\
x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(3)(-5)}}{2(3)}=\frac{2 \pm \sqrt{64}}{6}=\frac{2 \pm 8}{6} \\
\therefore x=\frac{2+8}{6} \text { and } x=\frac{2-8}{6} \\
=\frac{10}{6} \\
=\frac{5}{3}
\end{array}
$$

