1. First, Check your HW using the solutions If questions still linger, use the HW Tally
2. Wait to pick up the Warm Up until after your HW is turned in.
d

Questions on HW ?

1-66. Graph the following functions and find the x - and y-intercepts.
a. $y=2 x+3$
b. $f(x)=2 x+3$

c. How are the functions in (a) and (b) the same? How are they different?
same function and graph. JusT different notation.
d
a.

b.

c.

d.

$$
\begin{aligned}
& \tan 15^{\circ}=\frac{5}{x} \\
& x=\frac{5}{\tan 15^{\circ}}
\end{aligned}
$$

d

65

$$
f(x)=\frac{1}{x-2}
$$

(a) $f(2.5)=$

68

Warm up

Warm Up

1.2.1_Day 2

Multiply the following polynomial factors:
a monomial times a binomial
$x(x-7) \quad \chi^{2}-7 \times$
monomial times a binomial
$2 y^{2}(5 y+4)$

$$
10 y^{3}+8 y^{2}
$$

a binomial times a binomial

$$
(z+2)(10 z-1)
$$

$$
10 z^{2}-z+20 z-2
$$

6) Hopefully you have already either written or pasted into your Algebra log, the Quadratic Formula. Use it to solve the following quadratic equation.

$$
3 x^{2}-2 x-5=0
$$

$$
a=3 \quad b=-2 \quad c=-5
$$

$$
x=\frac{-\left(1 \pm \sqrt{()^{2}-4()()}\right.}{2()}=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(3)(-5)}}{2(3)}
$$

$$
\begin{aligned}
& \text { (5) } 3 x^{2}-2 x-5=0 \quad a=3 \quad b=-2 \quad c=-5 \\
& x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(3)(-5)}}{2(3)}=\frac{2 \pm \sqrt{64}}{6}=\frac{2 \pm 8}{6}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\therefore x & =\frac{2+8}{6} & \text { and } x & x=\frac{2-8}{6} \\
& =\frac{10}{6} & x & =\frac{-6}{6} \\
& =\frac{5}{3} & & =-1
\end{array}
$$

Started Yesterday: The Box
Aim: To create a function that models a geometric situation.

Designing an open top box, starting from a flat rectangular piece of metal.

What should the height of the finished box be in order to maximize the volume ????

What is the largest cutout size possible? therefore, the largest possible height is 8 .n

Cut Out Length (cm)		
x	Volume $\left(\mathrm{cm}^{3}\right)$ 0	
0	0	
1	280	So what would the graph
2	432	of the
3	480	Volumes vs Cut out size
4	448	
5	360	
6	240	
7	112	
8	0	

Nexts step:

Next to your table, set up a graph and plot
the points

Does it make
sense to make
the graph continuous?
atatsie (nedt) inom

atatsere (hedt) inom

Does it make

 sense to make the graph continuous?
here is what part of the graph of the volume function actually looks like.

Add the three dimensions to the box

With your team, calculate the volume of the box

$V=x(22-2 x)(16-2 x)$
$=x\left[4 x^{2}-7 x+352\right]$

$$
=4 x^{3}-76 x^{2}+352 x
$$

$$
\begin{aligned}
& V=\frac{o r}{(22-2 x)(16-2 x)} \\
&=\left(22 x-2 x^{2}\right)(16-2 x) \\
&=352 x-44 x^{2}+32 x^{2} \\
&+4 x^{3} \\
&=4 x^{3}-76 x^{2}+352 x
\end{aligned}
$$

graphingusingtheGDC

max volume is $480.1 \mathrm{~cm}^{3}$ when cut out size 3.05 cm
B.8.

We learn from mistakes.
So, mistakes on homework and small LCQ's are not a bad thing as long as.

In a moment, I'll give each group a copy of the solutions.

No cell phones out
If you have nor taken it, let me know Now.

Confusion about

$$
\sqrt{16}
$$

$$
\begin{gathered}
\sqrt{ } \\
\sqrt{x^{2}}=\sqrt{25} \\
x= \pm 5
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Solutionsaions } \\
\text { to equal }
\end{array} \\
& \text { to eq } \frac{18}{2}=\frac{2 x}{2} \\
& \begin{array}{l}
\text { Same with } \\
\text { writing }
\end{array} \\
& \begin{array}{l}
\text { writing } \\
\text { functions }
\end{array} \\
& 9=x \\
& X=9
\end{aligned}
$$

Exact Answers

$$
\begin{aligned}
& (x \quad)=0 \\
& \downarrow x-5=0 \\
& 3 x=5 \\
& x=\frac{5}{3} \\
& \underline{N 0 T} 1.67 \\
& 1.6
\end{aligned}
$$

The Ch. 1 test will tentatively be on:

