

- 1. Draw & label:
 - ---2 cycles of the sine function, from -360 to 360.
 - ---Draw one cycle of the cosine function.
- 2. Without using your calculator, <u>find an angle</u> whose cosine value is the same as the one produced by the cosine of 120°.

lacktriangle

h

January 26, 2018

Draw one cycle of the cosine function.

2. Without using your calculator, <u>find an angle</u> whose cosine value is the same as the one produced by the **cosine of 120°.**

p) sque of 1

$$\frac{3}{x+1} + \frac{4}{x} = 2$$

$$d = \sqrt{3^2 + 4^2 + 5^2}$$

- c. A negative cosine and a negative sine.
 - a. A positive cosine and a negative sine.

c. A negative cosine and a negative sine.

d. A cosine of about -0.9 and a sine of about 0.4.

e. Could an angle have a sine equal to 0.9 and cosine equal to 0.8? why not.

What word are you reminded of when see the word.....

"Radian"

read the first two paragraphs page 332 at the beginning of section 7.1.5

After so many years of using degrees there is a natural reluctance to use other measures.

but...

The working unit of circular function is the radian not the degree.

Visualize a radian

Radian Definition (Notes)

1 Radian

length = r A radian is defined as an angular measure such that....

an arc length of one radius on a circle of radius one produces an angle with measure one radian. .

The arclength is equal to the angle

$$C = 2\pi$$

$$(= 2\pi)$$

There are 2π radians around a circle, exactly.

IF you have a 30 degree angle in a circle, and the circle gets enlarged proportionallydoes an angle change?

Wolfram edf

Drawing Radians

7-75

page 334

a. 1 degree

•

b. 1 radian

c. π radians

d. $\frac{\pi}{2}$ radians

e. $\frac{\pi}{4}$ radians

Converting from Degrees to Radians

7-76

page 334

$$\frac{\text{Convert}}{75.2^{\circ} \times \frac{2\pi}{360^{\circ}}} = 1.31 \text{ radians}$$

$$\frac{130\%}{67236\%} \times \frac{2\pi}{6} = \frac{\pi}{6} \text{ radian} < \frac{\pi}{6}$$

$$\frac{37}{27} = \frac{3.90}{270} = 135^{\circ}$$

$$\frac{3\pi}{7}$$
 . $\frac{360}{2\pi}$ = 77.14

In your <u>notes</u>, write down the following and put a box around it:

be sure your calculator is in degree mode.

Assignment

7..... 77-79, 80ac, 82a, 83, 85

on #78 only worry about the approximate answers

