Teach directly question 75 and 76

Wolfram Demonstrations Project demonstrations.wolfram.cor

Angles Measured in Degrees and Radians

One Tab

(e) ttp://www.one-tab.com/page/hMrpVapUSXel0E5wnNHgAA

https://samjshah.com/2013/11/26/radians/ Dew
https://www.geogebra.org/student/m59882

1. Draw \& label:
---2 cycles of the sine function, from -360° to 360°.
---Draw one cycle of the cosine function.
2. Without using your calculator, find an angle whose cosine value is the same as the one produced by the cosine of 120°.

HW Help

2 cycles of the sine function.

2 cycles of the sine function.

Draw one cycle of the cosine function.

2. Without using your calculator, find an angle whose cosine value is the same as the one produced by the cosine of 120°.

HW Queslions

Screamer breaks

53 horizontal feet from the vertical support pole What is the angle of rotation?

(63) a) $(-,+)$
b) sine of 1
c) $(-,-)$
d) $(-09,04)$
$(08,09)$ possible?

62
7-62. Shinna was riding The Screamer when it broke down. Her seat was 53 horizontal fe from the central support pole. What was her seat's angle of rotation? How can you tell?
c. A negative cosine and a negative sine.
a. A positive cosine and a negative sine.

b. A sine of -1 .

c. A negative cosine and a negative sine.

d. A cosine of about -0.9 and a sine of about 0.4.

e. Could an angle have a sine equal to 0.9 and cosine equal to 0.8 ? why not.

h

What word are you reminded of when

> see the word......

read the first two paragraphs page 332 at the beginning of section 7.1.5

After so many years of using degrees there is a natural reluctance to use other measures.
but...

The working unit of circular function is the radian, not the degree.

Visualize a radian

Radian Definition (Notes)

A radian is defined as an angular measure such that.....
an arc length of one radius on a circle of radius one produces an angle with measure one radian.
The arc length is equal to the angle

$$
\begin{aligned}
& C=2 \pi r \\
& \text { if } r=1 \\
& C=2 \pi
\end{aligned}
$$

-

There are 2π radians around a circle, exactly.

There are π radians half way around a circle.

Angles Measured in Degrees and Radians

IF you have a 30 degree angle in a circle, and the circle gets enlarged proportionallydoes an angle change ?

Wotfram cdf

Drawing Radians

$$
\begin{array}{r}
7-75 \\
\text { page } 334
\end{array}
$$

d. $\frac{\pi}{2}$ radians

e. $\frac{\pi}{4}$ radians

g. $\frac{\pi}{6}$ radians

$$
\theta=\frac{5 \pi}{6} \quad \theta=-\frac{3 \pi}{4}
$$

$$
\begin{aligned}
& \frac{5}{6} \pi \\
& \frac{5 \pi}{6}
\end{aligned}
$$

Converting from Degrees to Radians

7-76
page

ConverT
$75.2^{\circ} \times \frac{2 \pi}{360^{\circ}}=1.31 \mathrm{radians}$

$$
\frac{60}{360}
$$

$$
\begin{aligned}
& \text { Lradians Convert to degrees } \\
& \frac{3 甘}{1 K} \cdot \frac{960^{\circ}}{2 \pi}=\frac{3 \cdot 90}{2} \cdot \frac{270}{2}=135^{\circ}
\end{aligned}
$$

h
\square
h

In your notes, write down the following and put a box around it:

h
\square

Assignment

7 77-79, 80ac, 82a, 83, 85
on \#78 only worry
about the approximate ansuetis.

$$
\begin{aligned}
& \text { pif } \\
& ===
\end{aligned}
$$

