## Write the following in your notes

$$
\text { tangent of } \theta \text { is the slope }=\frac{\text { rise }}{\text { run }}
$$



## Then Pick Up the Warm Up

Evaluate (without using a calculator) each of the following expressions:
(hint: you already know the coordinates of these points created by these rotation angles!)


$$
\sin (\text { angle })=\text { ratio }
$$

2) What rotation angle (in radians) corresponds to an angle around the unit circle of $\frac{9 \pi}{4}$ ? Draw a unit circle to illustrate.

What other angle will take you to the same point on the circle ?

3) You are riding the Ferris Wheel ( 100 foot radius) and it breaks down yet again. You are stuck 21 feet below the ground. What is the angle of rotation to your position?

$$
\begin{aligned}
& \sin (\theta)=\frac{21}{100} \\
& \theta=\sin ^{-1}\left(\frac{21}{100}\right) \\
&=12.1^{\circ} \\
& \theta=360-12.1 \\
&=347.9^{\circ}
\end{aligned}
$$




$$
\frac{4 \pi}{12} \cdot \frac{360}{2 \pi}
$$

$\square$

$\frac{7}{6} \pi$


NOTES
Calculate exact values of sine and cosine for single (benchmark) angles

Strategy
For each angle, draw a small unit circle with as little information as possible on it.




$$
\begin{aligned}
& \sin \left(-\frac{13 \pi}{4}\right)=\frac{\sqrt{2}}{2} \\
& \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

$$
\sin (\sin )=0 \quad \cos (-3 \pi)=-1 \cos \left(\frac{3 \pi}{2}\right)=0
$$

| $\tan \left(\frac{2 \pi}{3}\right)=\frac{\sin \left(\frac{2 \pi}{3}\right)}{\cos \left(\frac{2 \pi}{3}\right)}=\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}$ |  |
| ---: | :--- |
| $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right.$ | $=\frac{\sqrt{3}}{2} \cdots-\frac{21}{1}$ |
|  | $=-\sqrt{3}$ |

Find exact values of the angles that are solutions to the equation: $\cos (\theta)=0,5 \quad 0<\theta=2 \pi$ $\cos (\theta)=\frac{1}{2}$


$$
\begin{aligned}
& \theta=\frac{5 \pi}{3} \\
& \theta=\frac{\pi}{3}
\end{aligned}
$$

## Assignment

$7 . . .90,91,93,94 a b c, 95-98$

