https://www.desmos.com/calculator/r1vk7mkewl

there is no warm up today
\square
(24) domain of $\mathbf{y}=\boldsymbol{\operatorname { s i n }} \theta$
depends on if the Ferris Wheel is part of the thinking

(28) Graph the system $1+x-y \geq 3 x-2 y-4$

$$
y<2 x^{2}+1
$$

(26)

$$
\begin{aligned}
& y=3 x^{2}-24 x+55 \\
& y=3\left(x^{2}-8 x\right)+55 \\
& y=3\left(x^{2}-8 x+16\right)+55-16 \\
& y=3(x-4)^{2}+39
\end{aligned}
$$

(32) $\begin{aligned} & \text { Mary has an antique } \\ & \text { collection containing } \\ & \text { She has five more }\end{aligned}$ red marbles than

$$
r=b+5 \quad b=r+5
$$ twice as many red as green marbles.

$$
\begin{aligned}
& x=i g . \\
& r
\end{aligned}
$$

bless.

7.1.3 Notes

$$
5
$$

yesterday's warm up

$y=\sin (\theta)$

Goal
:
Determine a reference angle.

on the worksheet
Classwork II

Back side

(c) How can symmetry help?

The graph is symmetrical around two vertical lines

$$
\theta=90^{\circ} \text { and } \theta=270^{\circ}
$$

now part
3 peopleparis will be selected to illustrate.

Notes: Reference Angles

Every point on the Unit Circle is linked with one reference angle which is.....
an angle formed between the radius drawn from the origin to that point and the horizontal axis.

1. On circle I
2. Pretend you were a rider that got stuck on the Ferris Wheel. Mark a random point on the circle in the first quadrant to show where you got stuck.
3. Draw the height (to show how far you would climb down to get off.
4. Draw the triangle (with an rotation angle from $\dot{0}$)

On the bock side of your paper
Determine the size of a reference angle for a rotation of

$$
\begin{aligned}
& \theta=105^{\circ} \\
& \theta_{r}=180^{\circ}-105^{\circ}=75^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \theta=229^{\circ} \\
& \theta_{r}=\frac{229}{49^{\circ}}
\end{aligned}
$$

Consider leaving space in your notes to tape the bottom half of this sheet into your notes.

The Ferris Wheel

- Riders were stuck all over, at various heights, both positive and negative heights.

Add to your notes:
A decent circle

Do Core Problem 7-33

(b) Did any other riders have the exact same climb? What were the rotation angles to those points?

Draw the corresponding triangles
(c) What is the relationship between these four triangles?

They all have the same size reference angle.
\square

Sketch one cycle of the Screamer graph

Now on a separate grid sketch 2 cycles.

BB.

Assignment:
7..... $36-38,40-41,44$
$L C Q$ tomorrow on recent HW problems

\square

