

Answers

\square

$7-18$
(a) $\quad \log (1)=n$
(b) $\quad \log \left(10^{3}\right)=n$

$$
\begin{aligned}
& \begin{array}{l}
\text { (c) } 10^{\log (4)}=n \\
\text { convert to log form }
\end{array} \\
& \text { (d) } 10^{3 \log (4)}=n \\
& \text { Convert to log form } \\
& \underset{\substack{\log _{10}(4)}}{ }=\log _{10}(n) \\
& \text { exp } n=4 \\
& m^{\log _{m}(n)}=n
\end{aligned}
$$

| $7-19$ | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| x | -2 | -1 | 0 | 1 | 2 | 3 |
| y | 3 | 4 | 5 | undefined | 7 | 8 |

(a) Appears to be a linear function but there is a hole in the graph at $x=1$ (not an asymptote)
b) the linear relationship is $y=x+5$

$$
f(.9)=5.9
$$

$f(1.1)=6.1$ No asymptote
c) $f(x)=\frac{x^{2}+4 x-5}{x-1} \Rightarrow \frac{(x-1)(x+5)}{x-1}=x-5$

The complete graph is a line, $y=x+5$, with a hole at $(1,6)$
$7-20$
a) Exponential is approprlatice for population growth or decay
b) $y=a b^{x}+c+00000$

$$
\underset{\substack{\text { Hears } \\ \text { after } \\ 2000}}{\left(y_{y=a, b^{k}+60000}^{*}, 720001\right)}(2,70379)
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { Huars } \\
\text { affor } \\
2000
\end{array}(0,720001) \quad(2,70379) \\
& y=a b^{x}+60000 \\
& y=a b^{\kappa}+6000 \\
& 220000=a b^{\circ}+60000 \quad 70379=a b^{\frac{h}{2}}+60000 \\
& 12000=a b^{\circ} \quad 70379=12000(b)^{2}+60000 \\
& 12000=a \\
& 10379=12000 \cdot b^{2} \\
& \frac{10379}{12000}=b^{2} \\
& .93=6 \\
& y=12000(.93)^{x}+60000
\end{aligned}
$$

$7-21$

what is y when $x=11$?

$$
\begin{gathered}
11^{2}+y^{2}=26^{2} \\
y^{2}=26^{2}-11^{2} \\
y=23.6
\end{gathered}
$$

circle $x^{2}+y^{2}=26^{2}$

NOT A RIGHT Triangle so Sol Can Tola is not Useable
Given info is SAS so Law of Cosines works

$$
\begin{aligned}
& \sqrt{c^{2}}=a^{2}+b^{2}-2 a b \cos c \\
& x^{2}=43^{2}+35^{2}-2(43)(35) \cos 50^{\circ} \\
& x^{2}=1139.209 \ldots \\
& x=33.752
\end{aligned}
$$

(b) हु L4 LAW OF Sines
$15 \times \frac{\sin 25^{\circ}}{x}=\frac{\sin 41^{\circ}}{15}$
cross multiply $x\left(\sin 43^{\circ}\right)=15\left(\sin 25^{\circ}\right)$

$$
x=\frac{15 \sin 20^{\circ}}{\sin 41^{\circ}}=9.663 \mathrm{fect}
$$

$7-23$

$$
\begin{gathered}
x+y+z=40 \\
y=x-5 \\
x=2 z
\end{gathered}
$$

substitute to get

$$
x+(x-5)+z=40
$$

substitute $x=2 z$ to get

$$
\begin{gathered}
2 z+(2 z-5)+z=40 \\
2 z+2 z-5+z=40 \\
5 z=45 \\
z=9
\end{gathered} x=2(9)
$$

Random HW Quality Check

- Turn in the assignment that was due yesterday. 4-6,9-11
- Just your HW paper, no score necessary yet.

Have one person trom your group:

Pick up your Ferris Wheel data and graph from the last class.
Then explain what we did to anyone who was absent ! If absent, you do not have to make up this particular activity, but you do need to understand it!

Summary and Ramifications from the Ferris Wheel Activity

We created a new parent function called the:
The Sine Function

The Sine function is the connection between the heights above (and below) the midline AND the angle of rotation (θ)
\uparrow the Greek letter θ theta

The connection happens because at every point along the circle (well almost each point), you can make a right triangle with the height and the angle
θ

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{h}{1}
$$

so $\quad h=\sin \theta$
Tho matter the size of the angle
as a function of θ

$$
h(\theta)=\sin \theta
$$

I. We collected periodic data (heights around the circle)
2. We plotted those heights against the various angles of rotation.

I. We collected periodic data (heights around the circle)
2. We plotted those heights against the various angles of rotation.

We then graphed the function $h(\theta)=\sin \theta$ and it fit pretty well.

To deepen the connection between the heights of points around a circle (with a radivs=1) and the angle of rotation.
In today activity:

Each pair needs a
Resource. Sheet $\Rightarrow 7-14$ need a straight edge to make triangles

Try to finish in 30 minutes
-Each person pair will turn in their own.

Before you turn in your paper, title it
The Sine Function $y=\sin (\theta)$

Then check last night's HW with the solutions

 Assignment: 7....24-30, 32

