
pivide $\frac{x+\frac{1}{x}}{x}$
condense to

$$
\begin{gathered}
\begin{array}{c}
\text { condense to } \\
\text { cingle } \\
\text { sractioe }
\end{array} \\
\frac{\frac{x}{1}+\frac{1}{x}}{x}
\end{gathered}
$$

2 Convert from log to exponential form
$t=\log _{5} 60$
(3) solve
$3.26^{x+1}=99$
A. Convert the following log equaiton to exponential form.
B. Then follow the same process from problem \#3 above (in other words, take the log of both sides) to isolate n. If sucessful you can outsmart your calculator!

$\log _{a} b$

This is called the
change of base formula
$\log _{a}(b)=\frac{\log (b)}{\log (a)}$
which, in fact, can be converted to any base

This is called the
change of base formula

$$
\log _{a} b=\frac{\log b}{\log a}=\frac{\log _{n} b}{\log _{n} a}
$$

which, in fact, can be converted to any base
(5) Change each expression to ones with common logs only.

$$
\log _{8}(3)
$$

$$
\log _{5}(x)
$$

$$
\log _{n}(70)
$$

(6) Lastly, change the following log expression to one with base 5

$$
\log _{3} 4=\frac{\log 4}{\log 3}
$$

This is called the change of base formula

$$
\log _{a} b=\frac{\log b}{\log a}=\frac{\log _{n} b}{\log _{n} a}
$$

which, in fact, can be converted to any base

HW Questions
Answer 103 a

$$
\begin{aligned}
& x=-3 \\
& y=5 \\
& z=10
\end{aligned}
$$

6-72 Find a quadratic in the form $y=a x^{2}+b x+c$ that passes through the throe points,

$$
\begin{array}{llll}
(1,5) & 5=a(1)^{2}+b(1)+c & \rightarrow \text { I } & 5=a+b+c \\
(3,19) & 19=a(3)^{2}+b(3)+c & \rightarrow \text { II } & 19=9 a+3 b+c \\
(-2,29) & 29=a(-2)^{2}+b(-2)+c & \rightarrow \text { III } 29=4 a-2 b+c
\end{array}
$$

III $19=9 a+3 b+c$
II $5=a+b+c$
Subtract $14=8 a+2 b$

III $29=4 a-2 b+c$
II $\quad 5=a+b+c$
subtract $24=3 a-3 b$
(A) $14=8 a+2 b \xrightarrow{3} 42=24 a+6 b$

$$
\begin{aligned}
& \text { (13) } 24=3 a \\
& 5=a+b+c \\
& 5=3+(-5)+c \\
& 5=-2+c \\
& c=7
\end{aligned}
$$

$$
48=6 a-6 b
$$

$$
90=3 a
$$

$$
\text { so... } a=3
$$

$$
42=24(3)+6 b
$$

$$
42=72+66
$$

$$
-30=6 b
$$

$$
\text { so } b=-5
$$

$$
y=3 x^{2}-5 x+7
$$

97

$$
\begin{array}{lll}
\log (x)=0 & 10^{0}=x & 1 \\
\log (x)=1 & 10^{1}=x & 10 \\
\log (x)=2 & 10^{2}=x & 100
\end{array}
$$

Use properties of logs to simplify log expressions

Why ?
because log equations can get more complex

$$
5 \cdot \log _{3}(x)-\log _{3}(2 x)=14
$$

Tape or Write into your notes
Logarithm Properties
The following definitions and properties hold true for all positive $m \neq 1$.

Definition of logs:
Product Property:
Quotient Property:
Power Property:

$$
\log _{m}(a)=n \text { means } m^{n}=a
$$

$$
\log _{m}(a \cdot b)=\log _{m}(a)+\log _{m}(b)
$$

$$
\log _{m}\left(\frac{a}{b}\right)=\log _{m}(a)-\log _{m}(b)
$$

$$
\log _{m}\left(a^{n}\right)=n \cdot \log _{m}(a)
$$

Take notes as we do
109 together
a. $\log _{1 / 2}(4)+\log _{1 / 2}(2)-\log _{1 / 2}(5)$

$$
\begin{aligned}
& \log _{\frac{1}{2}}(4 \cdot 2)-\log _{\frac{1}{2}}(5) \\
& \log _{\frac{1}{2}}(8)-\log _{\frac{1}{2}}(5) \longrightarrow \log _{\frac{1}{2}}\left(\frac{8}{5}\right) \\
& \log _{m}(a \cdot b)=\log _{m}(a)+\log _{m}(b) \\
& \log _{m}\left(\frac{a}{b}\right)=\log _{m}(a)-\log _{m}(b)
\end{aligned}
$$

b. $\log _{2}(M)+\log _{3}(N)$

Cant
(base is not the same)

$$
\log _{m}(a \cdot b)=\log _{m}(a)+\log _{m}(b)
$$

$\log _{m}(a \cdot b)=\log _{m}(a)+\log _{m}(b)$
d. $\frac{1}{2} \log _{5} x+2 \log _{5}(x+1)$

$$
\begin{array}{r}
\log _{5}\left(x^{\frac{1}{2}}\right)+\log _{5}(x+1)^{2} \\
\log _{5}\left[x^{\frac{1}{2}} \cdot(x+1)^{2}\right]
\end{array}
$$

$$
\log _{m}(a \cdot b)=\log _{m}(a)+\log _{m}(b)
$$

$$
\begin{aligned}
& \text { c. } \log (k)+x \log (m) \\
& \log (k)+\log \left(m^{x}\right) \\
& \log \left(k \bullet n^{x}\right)
\end{aligned}
$$

e. $\log (4)-\log (3)+\log (\pi)+3 \log (r)$

$$
\begin{aligned}
\log \left(\frac{4 \pi)(r)^{3}}{(3)}\right) \quad & \log \left(\frac{4}{3} r^{3} \pi\right) \\
& \log \left(\frac{4}{3} \pi r^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
\log _{m}(a \cdot b) & =\log _{m}(a)+\log _{m}(b) \\
\log _{m}\left(\frac{a}{b}\right) & =\log _{m}(a)-\log _{m}(b)
\end{aligned}
$$

$$
\begin{gathered}
\text { f. } \log (6)+23 \log (10) \\
\log (6)+\log \left(10^{23}\right) \\
\log \left[6 \cdot 10^{23}\right]
\end{gathered}
$$

2 person - Pass backs
1st person makes does one step. Passes paper.

2nd person does a step, passes back.

$$
\log r-\log t+2 \log w
$$

Now backwards.
expand $\log 3 m^{3} p^{2}$

Assignment

6._...41b, 113, 114a, 115, 122ab, 163

