Questions on homework

$$\frac{\text{Warm UP}}{\text{@ Convert}} = 100 \text{ to log form}$$

$$\frac{\text{@ Convert}}{\text{@ Convert}} = 100 \text{ to log form}$$

LCQ later

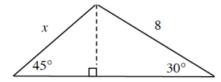
a convert
$$e^n = 100$$
 to $\log form$
 $n = \log_e(100)$

(b) Convert
$$\log_{x}(7) = 20$$
 to exp form $x = 7$

Find the inverse equation for $y = \sqrt[3]{\frac{x}{4} + 7}$.

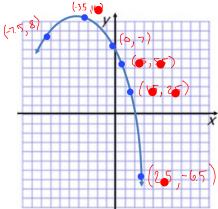
Show your work.

	Exponential Form	Logarithmic Form
a.	$y = 5^x$	
b.		$y = \log_7(x)$
c.	$8^x = y$	
d.	$8^x = y$ $A^K = C$	
e.		$K = log_A(C)$
f.		$\log_{1/2}(K) = N$

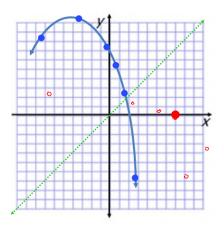

4. Evaluate each expression without a calculator (LCQ coming soon on this)

 $log_2 8$

 $\log_5 125$

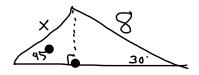

 $\log_{36}? = \frac{1}{2}$

6. Think back to \underline{y} our days in Geometry. Find the value of x.


b. Is the graph below a <u>function</u>?

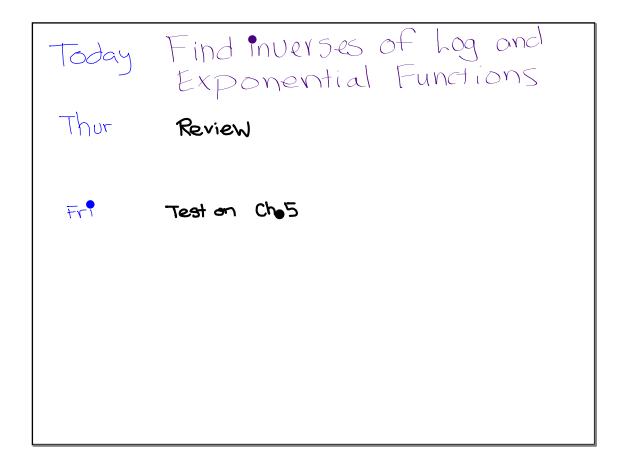
Is it's inverse a <u>function</u>?

b. Is the graph below a function?


Is it's inverse a <u>function</u>?

5

$$N^{3x} = 10^{x-8}$$



 $\frac{76}{(a)} (a) x^2 + 7x + 8 = 0$

© 5x2-x-7=0 Quad Formula

(a)
$$\chi^2 + 4\chi = -1$$

 $\chi^2 + 4\chi + 1 = 0$
complete
square

TEST INFORMATION SHEET

Test Conditions

> Thursday after school Friday lunch Friday after school

Aim #1 today

Finding inverses of log and expon. functions

To find the inverse of an exponential function:

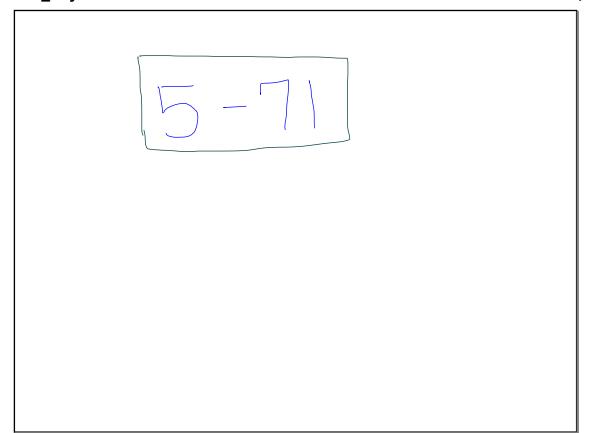
$$f(x) = 2^{x}$$

Priverse

reverse

x and y

Change to
graphing form

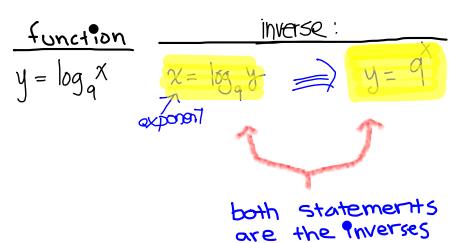

log form

$$f(x) = 2^{x}$$

Therefore

There

A similar process is used if you start with a log function
$$y = \log_6(x)$$



$$y = \log_{q} x$$

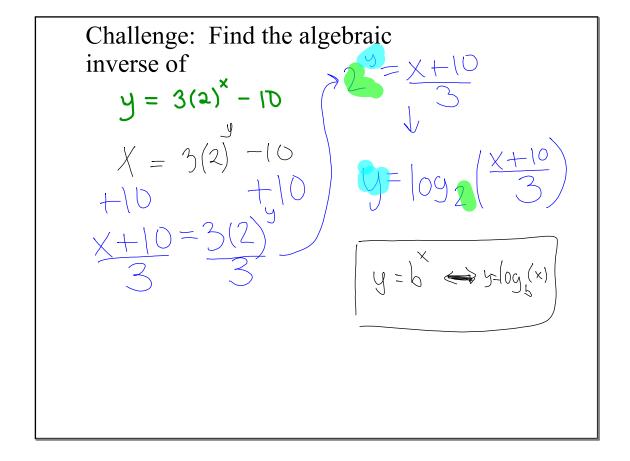
$$x = \log_{q} (y)$$

$$y = \log_{q} x$$

Clarification

$$y = 10^{\times} \qquad \frac{\text{9nverse}}{\text{100}}$$

$$y = 5^{2x}$$

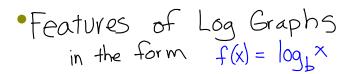

$$x = 5^{2y}$$

$$2y = \log_{5}(x)$$

$$y = \frac{\log_{5}(x)}{2}$$

$$y = \frac{1}{2} \cdot \log_{5}(x)$$

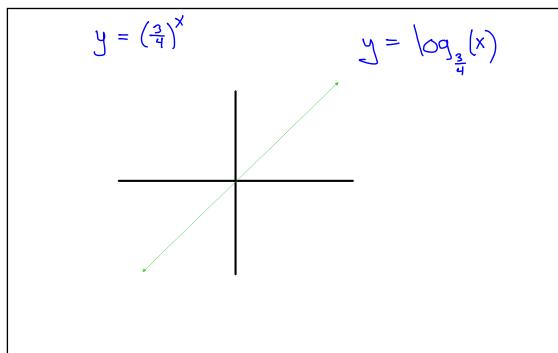
$$y = \frac{1}{2} \cdot \log_{5}(x)$$



585-87, 91, 92bd, 97, 103

do 88 if you want practice with that type of question.

What You Should Know


The Log

Their appearance

Domain

2) Log functions are defined only when bases are 0 < b < 1 or b > 1

- 3) Their graphs have a single vertical asymptote (equation = x=0)
- 4) The x-intercept is (1,0)