Questions on homework
warm Up
(a) Convert $e^{n}=100$ to \log form
(b) Convert $\log _{x}(7)=20$ to exp. form

LCQ later
(a) Convert $e^{n}=100$ to log form

$$
n=\log _{e}(100)
$$

(b) Convert $\log _{x}(7)=20$ to exp. form

$$
x^{20}=7
$$

Find the inverse equation for $y=\sqrt[3]{\frac{x}{4}}+7$. Show your work.
a.

$$
y=5^{x}
$$

b.

$$
y=\log _{7}(x)
$$

c.

$$
8^{x}=y
$$

d.

$$
\mathrm{A}^{\mathrm{K}}=\mathrm{C}
$$

e.

$$
\mathrm{K}=\log _{\mathrm{A}}(\mathrm{C})
$$

f.

$$
\log _{1 / 2}(\mathrm{~K})=\mathrm{N}
$$

4. Evaluate each expression without a calculator (LCQ coming soon on this)
$\log _{2} 8$
$\log _{5} 125$
$\log _{36} ?=\frac{1}{2}$
5. Think back to y our days in Geometry. Find the value of x.

b. Is the graph below a function ?

Is it's inverse a function?

b. Is the graph below a function?

Is it's inverse a function?

$$
10^{3 x}=10^{x-8}
$$

6

(76) (a) $x^{2}+7 x+8=0$
(b) $(x+2)^{2}=4$
take square root
(c) $5 x^{2}-x-7=0$
(d) $x^{2}+4 x=-1$

Quad Formula

$$
x^{2}+4 x+1=0
$$

complete square

Today Find inverses of \log and Exponential Functions
Thur Review

Fri Test on $\mathrm{Ch}_{0} 5$

TEST INFORMATION SHEET

Assembly Schedule
MOst should finish
幺 split possibilities
Thursday after school
Friday lunch
Friday after schod

Aim \#1 today

Finding inverses of log and expon. functions

To find the inverse of an exponential function:

$$
f(x)=2^{x} \xrightarrow[\begin{array}{c}
\text { reverse } \\
\text { reverse } \\
x \text { and } y
\end{array}]{\text { graphing form }} \xlongequal[\begin{array}{c}
\text { Convert to } \\
\text { log form }
\end{array}]{\text { Changeto }}
$$

$$
\begin{aligned}
& f(x)=2^{x} \xrightarrow[\begin{array}{c}
\text { reverse } \\
x \text { and } y
\end{array}]{\text { inverse }} \xrightarrow[\begin{array}{c}
\text { Convert to } \\
\text { log form }
\end{array}]{\substack{\text { changeto } \\
\text { graphing form }}} \\
& y=2^{x} \quad x=2^{y} \quad y=\log _{2}(x) \\
& f^{-1}(x)=\log _{2}(x)
\end{aligned}
$$

A similar process is used if you start with a log function

$$
y=\log _{6}(x)
$$

Clarification

$$
\frac{\text { function }}{y=\log _{9} x} \frac{\text { inverse: }}{x=\log _{9} y \Rightarrow y=9}
$$

exponent

both statements are the inverses
(b) $y=10^{x} \quad \frac{\text { inverse }}{y=\log _{10}(x)}$
(c) $y=\log _{6}(x+1)$

$$
x=\log _{6}(y+1)
$$

$$
6^{x}=y+1
$$

(d)

$$
\begin{array}{ll}
y=5^{2 x} \\
x & =5^{2 y} \\
\frac{2 y}{2}=\frac{\log _{5}(x)}{2} & y=\frac{\log _{5}(x)}{2} \\
& y=\frac{1}{2} \cdot \log _{5}(x)
\end{array}
$$

Challenge: Find the algebraic

$$
\begin{gathered}
\begin{array}{c}
\text { inverse of } \\
y=3(2)^{x}-10 \\
x=3(2)^{y}-10 \\
+10 \\
+10 \\
\frac{x+10}{3}=3(2)^{y}
\end{array} \quad \begin{array}{c}
\frac{y}{3} \\
\downarrow=\log _{2}\left(\frac{x+10}{3}\right) \\
y=b^{x} \Leftrightarrow y=\log _{6}(x)
\end{array}
\end{gathered}
$$

585-87, 91, 92bd, 97, 103
do 88 if you want practice with that type of question.

What You Should know

The Log Function

- Features of Log Graphs in the form $f(x)=\log _{b} x$
(1) Their
 Domain appearance Range
(2) Log functions are defined only when bases are $0<b<1$ or $b>1$

$$
y=\left(\frac{3}{4}\right)^{x} \quad y=\log _{\frac{3}{4}}(x)
$$

(3) Their graphs have a single vertical asymptote (equation : $x=0$)
(4) The x intercept is $(1,0)$

