If you did the assignment, pick up the solutions.



Later pick up the warm up.

A better way to write 
$$61c$$
  
 $-\infty < x < \infty$ ,  $x \ne 7$ 

1. Solve the quadratic equation

 $x^2 = -6x - 2$  using "completing the square" rather than

$$\chi^{2} + 6\chi + 2 = 0$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} + 6\chi + 9 = -2 + 9$$

$$\chi^{2} +$$

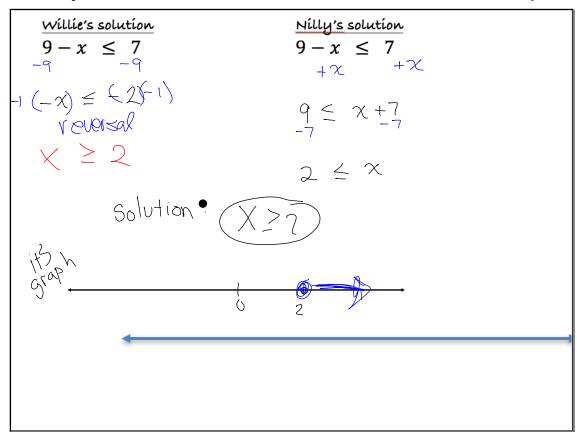
2. Add the rational expressions 
$$3 + 6x - 24$$

$$\frac{3}{(x-4)(x+1)} + \frac{6(x+4)}{(x+1)(x+4)} = \frac{3}{(x-4)(x+1)}$$

$$= \frac{6x - 21}{(x-4)(x+1)}$$

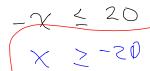
$$3 + 6x - 24$$

$$(x-4)(x+1)$$



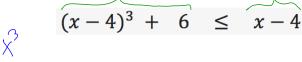
4. Now solve the inequality  $\frac{4-x}{2} \le 12$ . Then graph on a number line.

$$\left(\frac{4-x}{2}\right) \leq (12)^{2}$$

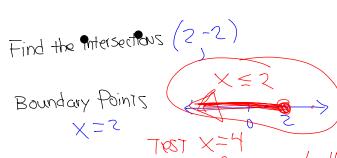




5. Solve the following inequality. Since you won't be able to solve directly for x, use the boundary point/Test point method.











6. Find the inverse of 
$$(x-3)^2+(y-1)^2=4$$
 and graph it. 
$$(y-3)^2+(x-1)^2=4$$

$$(y-3) + (x-1) = 7$$
  
 $(x-1)^2 + (y-3)^2 = 4$ 

$$(x-1)^{2} + (y-3)^{2} = 4$$

$$(y-3)^{2} = \sqrt{4 - (x-1)^{2}}$$

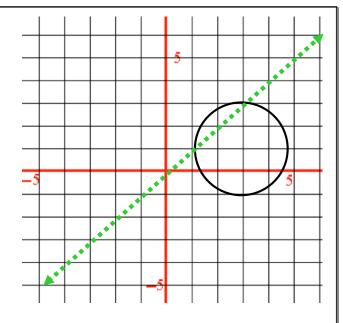
$$y-3=\pm (4-(x-1)^2)$$

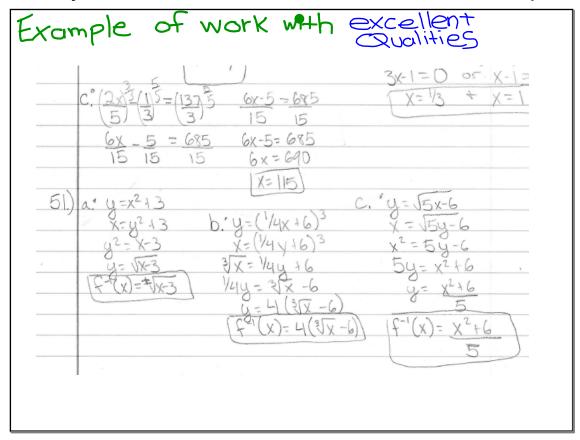
$$y-3 = \pm \sqrt{4-(x-1)^2}$$

$$y = 3 \pm \sqrt{4-(x-1)^2}$$

$$(x-3)^2+(y-1)^2=4$$
  
 $(y-3)^2+(x-1)^2=4$ 

$$(y-3)^2 + (x-1)^2 = 4$$





| algebra 26 Hw: Ch.5 # 48-49, 50bc, 51-52, 54ac                                                                                                     |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 48) $g(f(3)) = (5(3)-3)-1)^2$ b. $g(x) = (x-1)^2$ $f(4) = 5(4)-3$<br>$g(f(3)) = (12-1)^2$ $g(3) = (3-1)^2$ $f(4) = 17$<br>g(f(3)) = 121 $g(3) = 4$ |  |
| 49.) $a \cdot (x+1)(2x^2-3)$ $b \cdot (x+1)(x^2-2x+3)$<br>= $2x^3-3x+2x^2-3$ = $x^3-2x^2+3x+x^2-2x+3$<br>= $(2x^3+2x^2-3x-3)$ = $(x^3-x^2+x+3)$    |  |
|                                                                                                                                                    |  |
|                                                                                                                                                    |  |
|                                                                                                                                                    |  |

# Change of Plan the ch. 5 Test will be this Friday not Thursday

Gee Your LCQ

"SS" see the solutions

No cell phones out

I'll collect them
when finished.

$$X-5 = \frac{2}{7}y^{3}$$
 $7(x-5) = 2y^{3}$ 
 $\frac{7(x-5)}{3} = y^{3}$ 

Questions on HVV

first look at

Alg 2 Solutions

Toverligate the inverse of y=3 x=3

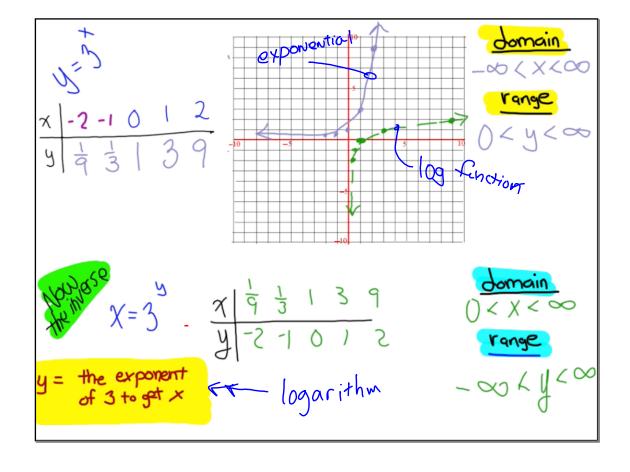
\* start by sketching its graph which can be done by making a table and reversing the coordinates or by "drawing" the inverse on your calculator

\* Find domain and range

\* - 20 < y < 20

or it can be written

of x>0



\* Find intercepts 
$$x$$
-intercept (set  $y=0$ )  $\Rightarrow$   $x=3$ 

So,  $x=1$ 

.:  $x$ -intercept is  $(1,0)$ 

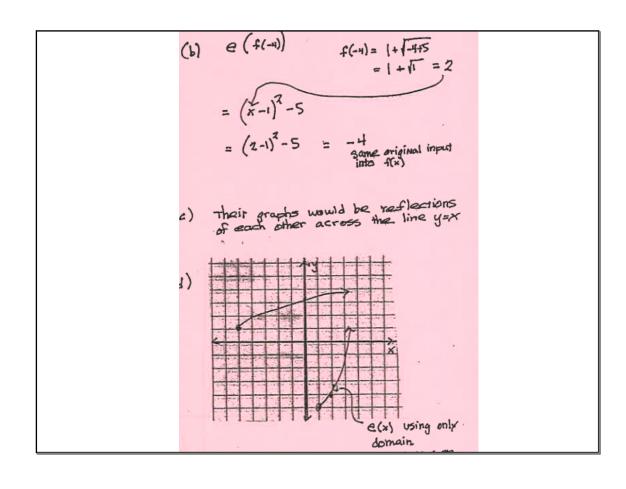
\* Asymptotes

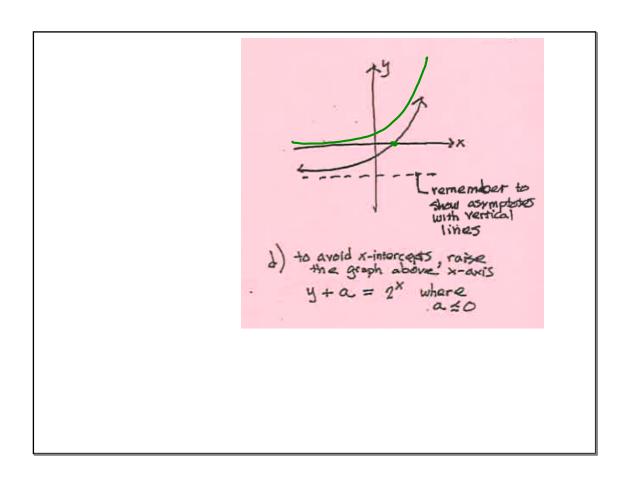
only a vertical: the equation X=0

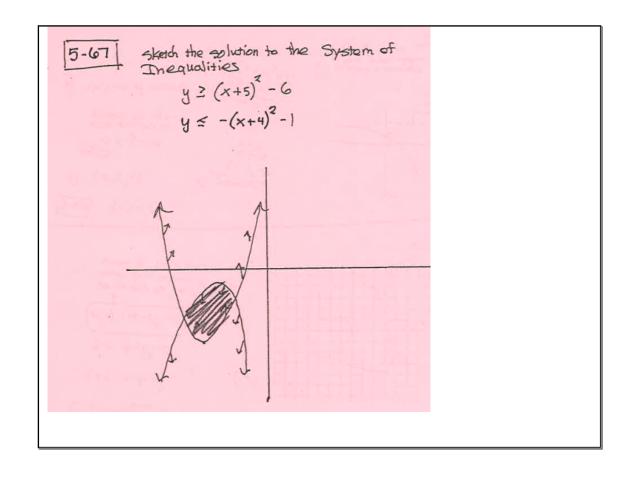
[5-62] 
$$f(x) = 1 + \sqrt{x+5}$$

(a) Find the inverse and coll it  $a(x)$ 
 $y = 1 + \sqrt{x+5}$ 

scartch  $x$ 's and  $y$ 's to display  $a$ 
 $x = 1 + \sqrt{y+5}$ 
 $x = 1 + \sqrt$ 







Define a Logarithm

and

convert back and forth between

log and exponential form

of an equation.

An Ancient Puzzle more than 2000 years old.

5-57
Write down both the clues and the puzzles

Here are some clues to help you figure out how the puzzle works:

$$log_2 8 = 3$$
  $log_3 27 = 3$   
 $log_5 25 = 2$   $log_{10} 10,000 = 4$ 

Additional 
$$\log_{3} 9 = 2 \qquad \log_{3} 49 = 2$$
  
Clues  $\log_{10} 100 = 3 \qquad \log_{5} 1 = 0$ 

exponent 
$$y = 3$$
 $y = 3$ 
 $y = 3$ 
 $y = 4$ 
 $y = 3$ 
 $y = 4$ 
 $y = 6$ 
 $y$ 

# Two Things to remember:

- 1. The base remains the same in both forms (in exponential form and log form)
- 2. A logarithm is an exponent (a logarithm produces an exponent)

$$\log_2(32) = 5$$
 exponential form

## Conversion Practice

# Conversion Practice

Log form
$$\log_{3}(x) = 5 \longrightarrow \times -3^{5} \longrightarrow 3^{5} = \times$$

$$2 = \log_{7}(m) \longrightarrow 7^{2} = m$$

$$4 = \log_{n}(6) \longrightarrow 0^{+} = 6$$

$$\log_{n}P = t \longrightarrow 0^{+} = P$$

$$X = \log_{3}(600) \qquad \leftarrow \qquad 3^{x} = 1000$$

$$\log_{x}(50) = 4 \qquad \leftarrow \qquad 50 = x^{4}$$

$$N = \log_{x}(1.23) \qquad \leftarrow \qquad 1.23 = 4^{n}$$

$$M = \log_{x}(R) \qquad \leftarrow \qquad A^{n} = R$$

### No calculator calculations

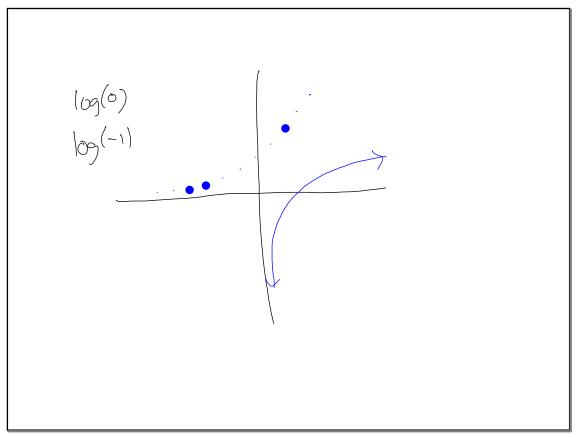


$$\log_2(32) = D = 5$$
  $2^D = 32$ 

(a) 
$$\log_2(32) = D = 5$$
  $2^D = 32$   
(b)  $\log_2(\frac{1}{2}) = B^{-1}$   $2^B = \frac{1}{2}$   $2^B = 2^{-1}$   
(c)  $\log_2(4) = X = 2$   $2^X = 4$ 

(c) 
$$\log_2(4) = X = 2$$

(c) 
$$|og_2(4)| = X = 0$$
  
(d)  $|og_2(0)| = X$ 



(e) 
$$\log_2(3)=3$$
 8 because  $2^3=8$ 

(a) 
$$\log_2(3) = 3$$
  $\frac{8}{\text{answer}}$  because  $2^3 = 8$ 

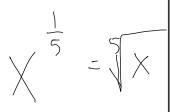
(b)  $\log_2(3) = \frac{1}{2}$   $\frac{2}{\text{answer}}$  because  $2^{\frac{1}{2}} = M$ 

(c)  $\log_2(\frac{1}{16}) = \frac{1}{2}$  because  $2^{-\frac{1}{2}} = \frac{1}{2}$ 

(d)  $\log_2(\frac{1}{16}) = \frac{1}{2}$  because  $2^{-\frac{1}{2}} = \frac{1}{2}$ 

(9) 
$$\log_2(\frac{1}{16}) = \frac{1}{2}$$
 because  $2^{-\frac{1}{2}} = \frac{1}{2^{\frac{1}{2}}} = \frac{1}{2}$ 

(h) 
$$\log_2(?) = 0$$
 be cause  $2^0 = 1$ 



See LCQ

No cell phones when going over LCQ's or tests "55" means see the solutions.



# **Strong Recommendation**

- Read the Math Notes on page 233
- Copy down in your Notes

Assignment

Worksheet 5.2.2

Add the page 233 Math Notes

to your notes.

mc > pt

b. Is the graph below a function?

Is it's inverse a function?

