If you did the assignment, pick up the solutions.

Later pick up the warm up.
A better way to write

$$
-\infty<x<\infty, x \neq 7
$$

1. Solve the quadratic equation $x^{2}=-6 x-2$ using "completing the square" rather than

$$
\begin{aligned}
& x^{2}+6 x+2=0 \\
& x^{2}+6 x+9=-2+9 \\
& \left(\frac{6}{2}\right)^{2} \\
& \\
& \sqrt{(x+3)^{2}}=\sqrt{7} \\
& x+3= \pm \sqrt{7} \\
& x=-3 \pm \sqrt{7}
\end{aligned}
$$

2. Add the rational expressions $3+6 x-24$

$$
\begin{aligned}
\frac{3}{(x-4)(x+1)}+\frac{6(x-4)}{(x+1)(x-4)} & =\frac{3+6(x-4)}{(x-4)(x+1)} \\
& =\frac{6 x-21}{(x-4)(x+1)}
\end{aligned}
$$

| 10 | $=10$ |
| :---: | :---: | :---: |
| -10 | $=-10$ |
| 2 | <2 |

4. Now solve the inequality $\frac{4-x}{2} \leq 12$. Then graph on a number line.

$$
\begin{aligned}
& 2\left(\frac{4-x}{2}\right) \leq(12)^{2} \\
& 4-x \leq-24 \\
& -4
\end{aligned}
$$

5. Solve the following inequality. Since you won't be able to solve directly for x, use the boundary point/Test point method.

Boundary Points

$$
x=2
$$

6. Find the inverse of $(x-3)^{2}+(y-1)^{2}=4$ and graph it.

$$
\begin{gathered}
(y-3)^{2}+(x-1)^{2}=4 \\
(x-1)^{2}+(y-3)^{2}=4 \\
\sqrt{(y-3)^{2}}=\sqrt{4-(x-1)^{2}} \\
y-3= \pm \sqrt{4-(x-1)^{2}} \\
y=3 \pm \sqrt{4-(x-1)^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& (x-3)^{2}+(y-1)^{2}=4 \\
& (y-3)^{2}+(x-1)^{2}=4
\end{aligned}
$$

Example of work with excellent

$$
\text { C: } \begin{array}{rll}
\left.\left(\frac{2 x}{5}\right)^{\frac{3}{3}}-\frac{1}{3}\right)^{\frac{5}{5}}=\left(\frac{137}{3}\right)^{\frac{5}{5}} & \frac{6 x-5}{15}=\frac{685}{15} & 3 x-1=0 \text { or } x-1= \\
\frac{6 x}{15}-\frac{5}{15}=\frac{685}{15} & \begin{array}{c}
6 x-5=685 \\
\\
\\
\\
\\
x=690 \\
x=115
\end{array} &
\end{array}
$$

51.)

$$
a: \begin{aligned}
& y=x^{2}+3 \\
& x=y^{2}+3 \\
& y^{2}=x-3 \\
& y=\sqrt{x-3} \\
& f-(x)=\sqrt[\pm]{x-3}
\end{aligned}
$$

$$
\text { b. } y=(1 / 4 x+6)^{3}
$$

$$
\text { c.' } ' y=\sqrt{5 x-6}
$$

$$
x=(1 / 4 y+6)^{3}
$$

$$
x=\sqrt{5 y-6}
$$

$$
\sqrt[3]{x}=1 / 4 y+6
$$

$$
\begin{aligned}
& 1 / 4 y=\sqrt[3]{x}-6 \\
& y=4(\sqrt[3]{x}-6) \\
& f^{2}(x)=4(\sqrt[3]{x}-6)
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}=5 y-6 \\
& 5 y=x^{2}+6 \\
& y=\frac{x^{2}+6}{5} \\
& f^{-1}(x)=\frac{x^{2}+6}{5}
\end{aligned}
$$

Algebra 2 b Hw: Ch. 5 * 48-49,50bc, 51-52, 54ac
48.) $\operatorname{gg}(f(3))=((5(3)-3)-1)^{2}$

$$
\begin{aligned}
& g(f(3))=(12-1)^{2} \\
& g(f(3))=121)^{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { b. } g(x)=(x-1)^{2} & f(4)=5(4)-3 \\
g(3)=(3-1)^{2} & f(4)=17
\end{array}
$$

49.)

$$
\begin{array}{ll}
a(x+1)\left(2 x^{2}-3\right) & b:(x+1)\left(x^{2}-2 x+3\right) \\
=2 x^{3}-3 x+2 x^{2}-3 & =x^{3}-2 x^{2}+3 x+x^{2}-2 x+3 \\
=2 x^{3}+2 x^{2}-3 x-3 & =x^{3}-x^{2}+x+3
\end{array}
$$

Change of
Plan
the ch. 5 Test will be this Friday
not Thursday

See Your LCQ

* "SS" see the solutions
* No cell phones out
* I'll collect them when finished.

$$
\begin{aligned}
x-5 & =\frac{2}{7} y^{3} \\
7(x-5) & =2 y^{3} \\
\frac{7(x-5)}{2} & =y^{3}
\end{aligned}
$$

Questions on

first look at ${ }^{\text {\# }} 60$

Alg 2 Solutions
inverse
5-60] Investigate the inverse of $y=3^{x}$

$$
\begin{array}{r}
\sqrt{y} \\
x=3^{3}
\end{array}
$$

* Start by -setting its graph which can be done by making a tate and reversing the coordinates or by "drawing" the inverse an your calculator

$$
\begin{aligned}
& \text { * Find domain and range } \\
& 0<x<\infty \\
& \text { or it } \operatorname{can} b \text { written } \\
& \text { of } x>0
\end{aligned}
$$

* Find intercepts x-intercept $(\operatorname{set} y=0) \Rightarrow x=3^{\circ}$
so, $x=1$
\therefore x-intercapt is $(1,0)$
* Asymptotes
only a vertical: the equation $x=0$
line
$5-61 \quad f(x)=\frac{2}{7-x}$
d) $f(s(3))=\frac{2}{7-11}$
a) $f(7)=\frac{2}{7-7}=\frac{2}{0}$ undefined

$$
=\frac{2}{-4}
$$

b) domain
(x can be asl values, but not 7)

$$
-\infty<x<7,7<x<\infty
$$

$$
=-\frac{1}{2}
$$

c) $g(3)=2(3)+5=11$

$$
\begin{gathered}
-\infty<x<\infty, \\
x \neq 7
\end{gathered}
$$

5-62 $f(x)=1+\sqrt{x+5}$
(a) find the inverse and

$$
\text { call it } a(x)
$$

$y=1+\sqrt{x+5}$
switch x^{\prime} and $y^{\prime \prime}$ " 4

$$
\underset{-1}{x}={\underset{-1}{ }}^{1}+\sqrt{y+5}
$$

$$
\sqrt{y+5}=x-1
$$

(i) ${ }^{2}$ Samara bath ()2
$y+5=(x-1)^{2}$

$$
y=(x-1)^{2}-5
$$

$$
\therefore \quad e(x)=(x-1)^{2}-5
$$

$$
\begin{aligned}
& t \text { but con shy wa the inherited } \\
& \text { detain (frost the range of } f(x) \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { but con shy vas the inherited } \\
& \text { demon frost the rage of } f(x) \\
& \text { d which is } 1 \leq x<\infty
\end{aligned}
$$

$$
\text { which is } 1 \leq x<\infty
$$

(b) $e(f(-4)) \quad f(-4)=1+\sqrt{-4+5}$

$$
=1+\sqrt{1}=2
$$

$=(x-1)^{2}-5$
$=(z-1)^{2}-5=\frac{-4}{\substack{\text { same original input } \\ \text { into } \\ f(x)}}$
c) Their graphs would be reflections of each other across the line $y=x$
1)

C) $\begin{aligned} & y=2^{x} \\ & y=-2^{x}-3\end{aligned}$
c) $\frac{y \text {-intercept }}{2^{0}-3} \operatorname{set} x=0$
a.) $y=-2^{x}-3+3$

Somain

$$
-3<y<\infty
$$

which can atso be written as $y>-3$
b) No linas of spmmeny

5-66
(a) $x^{2}-49$
c) $x^{2}-x-72$

$$
=(x+7)(x-7)
$$

d) $2 x^{3}-8 x$
(b) $6 x^{2}+48 x$

$$
6 x(x+8)
$$

$$
\begin{aligned}
& =2 x\left(x^{2}-4\right) \\
& =2 x(x+2)(x-2)
\end{aligned}
$$

5-67
sketch the solution to the System of Inequalities

$$
\begin{aligned}
& y \geq(x+5)^{2}-6 \\
& y \leq-(x+4)^{2}-1
\end{aligned}
$$

Define a Logarithm and
Convert back and forth between \log and exponential form of an equation.

LAST AL ASS more than 2000 years old.

5-57
Write down both the clues and the puzzles

Here are some clues to help you figure out how the puzzle works:

$$
\begin{array}{ll}
\log _{2} 8=3 & \log _{3} 27=3 \\
\log _{5} 25=2 & \log _{10} 10,000=4
\end{array}
$$

$\begin{gathered}\begin{array}{c}\text { Additional } \\ \text { Clues }\end{array}\end{gathered} \log _{3} 9=2 \quad \log _{7} 49=2$

$$
\log _{10} 1000=3 \quad \log _{5} 1=0
$$

Two Things to remember:

1. The base remains the same in both forms (in exponential form and log form)
2. A logarithm is an exponent (a logarithm produces an exponent)

\log form exponential form
\square

Conversion Practice

Conversion Practice
Log form

$$
\begin{array}{lc}
\log _{3}(x)=5 & \rightarrow
\end{array} \begin{array}{lc}
& \frac{3^{5}}{2} 3^{5}=x \\
2=\log _{7}(m) & 7^{2}=m \\
4=\log _{n}(6) \rightarrow & n^{4}=6 \\
\log _{n} P=t \rightarrow & n^{t}=P
\end{array}
$$

$$
\begin{array}{cll}
x=\log _{3}(1000) & \leftarrow & 3^{x}=1000 \\
\log _{x}(50)=4 & \leftarrow & 50=x^{4} \\
n=\log _{4}(1.23) & \longleftarrow & 1.23=4^{n} \\
M=\log _{A}(R) & \leftarrow & A^{M}=R
\end{array}
$$

\square

No calculator calculations

in your NOTES
(a) $\log _{2}(32)=D=5 \quad 2^{D}=32$
(b) $\log _{2}\left(\frac{1}{2}\right)=B^{-1} \quad 2^{B}=\frac{1}{2^{1}} \quad 2^{\beta}=2^{-1}$
(c) $\log _{2}(4)=x=2 \quad 2^{x}=4$
(d) $\log _{2}(0)=x \quad 2^{x}=0$

(e) $\log _{2}\left(f_{8}\right)=3 \underset{\text { aver }}{8}$ because $2^{3}=8$
(f) $\log _{2}(\sqrt[r]{ })=\frac{1}{2} \frac{\sqrt{2}}{\overline{\text { answer }}}$ be cause $2^{\frac{1}{2}}=M$
(9) $\log _{2}\left(\frac{1}{16}\right)=-\frac{4 f}{7}$ because $2^{-\frac{b y}{4}}=\frac{1}{2^{3 /}}=\frac{1}{18}$
(h) $\log _{2}(?)=0 \quad \frac{1}{\text { answer because } 2^{0}=111010}$

No cell phones when going over LCQ's or tests "SS" means see the solutions.

Strong Recommendation

Read the Math Notes on page 233
Copy down in your Notes

Assignment
\qquad
Worksheet 5.2.2
Add the page 233
Math Notes to your notes.
b. Is the graph below a function? Is it's inverse a function?

$$
\text { mr } c \rightarrow \rho d x
$$

