\qquad
\qquad

Day \#1 Assignment - Algebra 2B

1) Find the domain and range of each graph.

2) Graph the following without a calculator. Use what you remember about transformations of functions, in this case from the parent $y=x^{2}$. The graph of the function $y=(x-2)^{2}$ is shown. Add the following two graphs, again without using a calculator.

$$
\begin{gathered}
f(x)=2(x+5)^{2} \\
\text { and } \\
f(x)=-(x-7)^{2}-1
\end{gathered}
$$

3) The general equation for a circle is $(x-h)^{2}+(y-k)^{2}=r^{2}$ with center (h,k). Using the grid from question \#2, Graph the circle given by the equation is $(x+3)^{2}+(y-1)^{2}=16$
4) Factor the following quadratic expression into two binomial factors. Use whatever method you used in Aglebra 2A.

$$
x^{2}-16 x-36
$$

5) Now factor the following three quadratic expressions, this time using a quick shortcut. (if possible)

$$
x^{2}-144=\quad 8 x^{2}-2=\quad n^{2}+25=
$$

7) Find the inverse of the following functions and use good notation for your answers:

$$
y=\frac{1}{5}(x+2) \quad f(x)=\frac{3 x-5}{2}
$$

8) Consider $f(x)=\frac{1}{2} x-3$
a. Graph $f(x)$ on the grid shown.
b. Then find its inverse, $f^{-1}(x)$ and graph it on the same grid.
c. Does the combined graph have a line of symr Can you tell it's equation?

9) Simon's function machine is shown at the right.

What is $A(2) ? \quad$ If 81 came out of his machine, what was dropped in?

If 8 came out, what was dropped in? be accurate
 on this to 2 decimal places.
10) If 10^{x} is equal to 10^{y}, what do you know about x and y ?
11) On separate paper, solve the following equations, showing your work.

$$
\frac{6}{15}=2-\frac{x}{5} \quad \frac{n}{n+1}=\frac{5}{7}
$$

