
(1) Consider the geometric sequence: $2,6,18,54 \ldots .$.
a) what is the common ratio? $\qquad$ b) List the next 3 terms $\qquad$
6.) Calculate the $30^{\text {th }}$ term (show work)
d) Find the sum of the first 10 terms, showing $I B$ natation.
(2) Find the $n^{\text {th }}$ term formula, $u_{n}$, for each sequence below
a) $7,14,28, \ldots$.
b) $80,86,92,98, \ldots$
c) $80,40,20, \ldots$
d) $5,-10,20,-40 \ldots$
(3) Find the sum of each sequence (showing work, etc.) of the
a) $2000,500,125, \ldots \ldots$
b) $10,6,2,-2, \ldots$.
(4) A geometric sequence has $u_{1}=8$ and $u_{4}=216$. What is the common ratio? (show work)
and find the general term, $U_{n}$.
and find $S_{7}$
(5) Find the sum of each series (show details for all steps) (a) $10+7+4+\ldots \ldots-50$
(1) $u_{n}=u_{n}+d(n-1)$
(2) $S_{21}=\frac{n}{2}\left[u_{1}+u_{0}\right]$
$-50=10-3(n-1)$

$$
n=21
$$

$$
=\frac{21}{2}[10+-50]
$$

(b) $\frac{1}{4}+\frac{1}{2}+1+\ldots \ldots+64$

1

$$
\begin{aligned}
& 1 u_{n}=u_{1} \cdot r^{n-1} \\
& 64=\frac{1}{4}(2)^{n-1} \\
& 216=2^{n-1} \\
& \log (216)=\log \left(2^{n-1}\right) \\
& \log (216)=(n-1) \cdot \log (2)
\end{aligned}
$$

$$
\frac{\log (211)}{\log (2)}=0-1
$$

$$
n=9
$$

$$
G_{q}=u_{1}\left[\frac{r^{n_{1}}-1}{r-1}\right]
$$

(6) Find $K$ given that a geometric sequence has consecutive terms of

$$
\begin{aligned}
& \text { has consecutive terms } \quad \frac{u_{2}}{u_{1}}=\frac{u_{3}}{u_{2}} \\
& 4, k, k^{2}-1 \\
& \frac{k}{{ }^{2}}=\frac{k^{2}-1}{k}
\end{aligned}
$$

(1) The figure shows two adjacent triangular fields ABC and ACD where $\mathrm{A} D=30 \mathrm{~m}, \mathrm{CD}=80 \mathrm{~m}, \mathrm{BC}=$ $50 \mathrm{~m} . \mathrm{m} \angle A C^{2}=0^{\circ}$ and $\mathrm{m} \angle B A C=30^{\circ}$

(b) Then calculate $m \angle A B C$

* $\frac{\sin 30^{\circ}}{50}=\frac{\sin B}{70}$
(13. The figure shows two adjacent triangular fields ABC and ACD where $\mathrm{AD}=30 \mathrm{~m}, \mathrm{CD}=80 \mathrm{~m}, \mathrm{BC}=$ $50 \mathrm{~m} . m \angle A C^{2} 60^{\circ}$ and ${ }^{\circ} \angle B A C=30^{\circ}$

(c) Calculate the areas of the field $\bar{A} C D$

Area $=\frac{1}{2} a b \sin C$

$$
\begin{aligned}
& =\frac{1}{5}(80)(30) \sin 60^{\circ} \\
& =1039.23 \mathrm{~m}^{2} \\
& =1040 \mathrm{~m}^{2} \text { to nearest } 3 \mathrm{sf}
\end{aligned}
$$

Aim Today
Apply the geometric sequence formula to Financial Investing

$$
u_{n}=u_{1} r^{n-1}
$$

if we know

$$
u_{n}=u_{0} r^{n}
$$

| Increase 200 by $50^{\circ}$ | 65 | 300 |  |
| :--- | :--- | :---: | :---: |
| Increase | 500 by $9 \%$ | 1.09 | 545 |
| Decrease | 80 by $15 \%$ | 0.85 | 68 |
| Decree 2000 by $1.3^{\circ}$ | .987 | 1974 |  |
| Increase 2000 by $100^{\prime \prime}$ | 2 | 400 |  |
|  |  |  |  |

Have your graphing calculator out.
You will be following a sequence of steps.

Type
1000
ENTER
this represents the amount of money you saved from a job.
you then deposit it in a bank that pays $4^{1 /}$ annual interest. You plan to invest this $\$$ for 8 years.
$\times 1.04$
ENTER (8 times)
You have just calculated the future value of your initial investment. This amount is:
$\$ 1,368.57$

Instead, what if you invested your $\$ 1000$ at an annual interest rate of $6.5 \%$ for 11 years.
to get $\$ 1,999.15$
which means you almost doubled your money

Hold it, I meant 30 years at $7^{\%}$
(just kidding)

Because we are applying a constant percent over and over, we can write an exponential function

$$
\begin{aligned}
y & =a b^{x} \\
& =1000(1.08)^{11} \text { \# of years }
\end{aligned}
$$

$$
\begin{aligned}
y & =1000(1+.08)^{x} \\
& =1000\left(100^{-1}+8^{6}\right)^{x}
\end{aligned}
$$

money that grows this way is growing with interest compounded annually.

But wait! Some banks pay you interest multiple times per year
for example: Semi-annually (twice a year)
this means your \# is being compounded twice a year
example: $8^{\%}$ annual interest
4. after six months

4\% after hoot six months

$$
\begin{aligned}
1000\left(1+\frac{8^{\%}}{2}\right)^{22} & \begin{array}{l}
11 \text { years at } \\
2 \text { compo per year }
\end{array} \\
1000\left(1+4^{\%}\right)^{22} & =1000(1.04)^{22} \\
1000(1+.04)^{22} & =
\end{aligned}
$$

Some banks pay
quarterly
monthly
semi-annually
annually daily continuously

$$
F V=P V \times\left(1+\frac{r}{100 k}\right)^{K n}
$$

$$
\begin{aligned}
& \text { Future Value } \\
& F V=P V \times\left(1+\frac{r}{100 k}\right)^{K n}
\end{aligned}
$$

Present
$\checkmark$ Glue



## handout

## 1) Calculate the future value of the following situations.

a) \$800 invested at $5 \%$ interest for 3 years, compouned monthly

$$
F V=
$$

b) $\$ 15,000$ at $2.5 \%$ interest for 20 years, compouned quarterly
c) $\$ 4,000$ at $6 \frac{1}{\mathbf{8}} \%$ interest for 20 years, comp. semi-annually
(1) Calculate the future value of the following situations.
a) $\$ 800$ invested at $5 \%$ interest for 3 years, compound monthly

$$
F V=
$$

b) $\$ 15,000$ at $2.5 \%$ interest for 20 years, compound quarterly
c) $\$ 4,000$ at $6 \frac{1}{8} \%$ interest for 20 years, comp. semi-annually

## 1) Calculate the future value of the following situations.

a) $\$ 800$ invested at $5 \%$ interest for 3 years, compquned monthly

$$
F V=800\left(1+\frac{5}{100(12)}\right)^{(12 \times 3)}=9291^{18}
$$

b) $\$ 15,000$ at $2.5 \%$ interest for 20 years, compound quarterly
c) $\$ 4,000$ at $6^{\frac{1}{\mathbf{L}}} \%$ interest for 20 years, comp. semi-annually

Calculate the future value of the following situations.
a) \$800 invested at 5\% interest for 3 years, compquned monthly

$$
F V=800\left(1+\frac{5(R)}{100}\right)^{2}=929^{2(1 / 2}
$$

b) $\$ 15,000$ at $2.5 \%$ interest for 20 years, compound quarterly

$$
F V=15000\left(1+\frac{2.5}{10(4)}\right)^{(4 \times 20)}=24,692.37
$$

c) $\$ 4,000$ at $6 \frac{1}{\mathbf{8}} \%$ interest for 20 years, comp. semi-annually

$$
\begin{aligned}
& \text { c) } \$ 4,000 \text { at } 6 \frac{1}{\mathbf{8}} \% \text { interest for } 20 \text { years, comp. semiannually } 7^{2} \\
& F V=400\left(1+\frac{6.125}{100(2)}\right)^{(2 \times 20)}=\begin{array}{l}
13,3680.62 \\
13368.64
\end{array}
\end{aligned}
$$

(2) Finding the Present Value (or Capital)

How much does Nicole need to deposit into an account to collect \$50,000 at the end of 6 years if the account is paying $6.8 \%$ p.a. compounded quarterly?
(2) Finding the Present Value (or Capital)

How much does Nicole need to deposit into an account to collect \$50,000 at the end of 6 years if the account is paying $6.8 \%$ p.a. compounded quarterly?


$$
P V=\frac{50000}{\left(1+\frac{600}{400}\right)^{24}} \approx \frac{1}{33,363 .}
$$

(3) Finding the interest rate

Calculate the interest rate that Tus would need in order to accumulate $\$ 25,000$ in 5 years time, if the initial amount to invest is $\$ 19,971$ (assume monthly compounding)
(3) Finding the interest rate

Calculate the interest rate that Tus would need in order to accumulate $\$ 25,000$ in 5 years time, if the initial amount to invest is $\$ 19,971$ (assume monthly compounding)

$$
\begin{aligned}
& 25000=19971\left(1+\frac{r}{100(12)}\right)^{(12 \times 5)^{2}} \\
& \frac{25000}{19971}=\left(1+\frac{r}{1200}\right)^{60} \quad 20=(1+x)^{3} \\
& \sqrt[60]{\frac{25000}{19971}}=1+\frac{r}{1200}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{25000}{19971}=\left(1+\frac{r}{1200}\right) \\
& \sqrt[60]{\frac{25000}{19971}}=\left.\right|_{-1}+\frac{r}{1200} \\
& \left.\sqrt[60]{\frac{25000}{19971}}-1=\frac{r}{1200} \quad r=4.5\right)
\end{aligned}
$$

Finding the Time Period
For how long must Jamie invest 4000 euro at $6.4 \%$ pa. compounded half-yearly if is to amount to 10,000 euro?
(4)

Finding the Time Period
For how long must Jamie invest 4000 euro at $6.4 \%$ pa. compounded half-yearly if is to amount to 10,000 euro?

$$
\begin{aligned}
10000 & =4000\left(1+\frac{6.4}{100(21}\right)^{2 \times n} \\
\frac{1002}{4000} & =\left(1+\frac{6.4}{200}\right)^{2 n} \\
\log \left(\frac{10}{4}\right) & =\log ^{2 n}\left(1+\frac{6.4}{200}\right)
\end{aligned}
$$




HH Textbook
page 418. $\qquad$

Review Set 12A... 2-5 and
Review Set 12B... 1, 6, 8

Your Tl-
has a Financial ApP
$\sqrt{ } /$ For IB students
in the past, knowledge of this App was not required.
$\checkmark$ starting on this year's exams going forward, they recommend it!

Handout

Word of warning: be able to get all answers algebraically, except for any problem involving monthly payments.

Assignment:
Worksheet: Compound Interest Practice and learn how to use the App

