http://www.mathcasts.org/mtwiki/InterA/BoxFolding

Eliminate Box Prob.

7

You have 5 minutes to check your HW with the solutions. Be sure to fill out the new weekly recording sheet.
later you can ask me questions.

RaJ

```
HOW cats see their home
```

3d Dark Br

$$
\begin{aligned}
f(x) & =\frac{10+3 x^{2}}{x}=\frac{10}{x}+\frac{3 x^{2}}{x}=10 x^{-1}+3 x \\
f^{\prime}(x) & =-10 x^{-2}+3 \\
& =-\frac{10}{x^{2}}+3
\end{aligned}
$$

Then, do the first problem
on the Notes 4.0
handout
(1) Find the equation of the Tangent and the Normal for the equation $y=x^{3}-5 x+2$ at the location $x=-2$

Find the equation of the Tangent and the Normal for the
equation $\mathbf{y}=\mathbf{x}^{3}-5 \mathbf{x}+\mathbf{2}$ at the location $\mathrm{x}=-2$
POT: $f(-2) \quad$ GRADient $f^{\prime}(x)=3 x^{2}-5$
$f(-2)=(-2)^{3}-5(-2)+2 \quad f^{\prime}(-2)=3(-2)^{2}-5=7$
$=4$
(2) Find the equation of the Tangent and the Normal for the equation

any point on a curve where the tangent line is horizontal is a STATIONARY point
local
maximums
horizontal
 inflection points

Horizontal tangents have a gradient of zero
To find all of those places on any given function:
(1) find thegradient function and
(2) set it equal to zero \checkmark same as

(3) Solve to find x-values (if any) which are the locations where the tangents have a gradient of zero!
(3) Find the equations) of any horizontal tangents of

$$
\begin{array}{cc}
f(x)=\frac{1}{3} x^{3}-x^{\prime}+2 & x^{2}-1=0 \\
f^{\prime}(x)=x^{2}-1 & x^{2}=1 \\
\text { Set } f^{\prime}(x)=0 & r \\
& x= \pm 1
\end{array}
$$

So the horizontal tangents are at $x=1$ and $x=-1$

(4)

Find the stationary points of the curve $y=x^{3}-3 x^{2}-9 x+10$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x-9 \\
& \quad \text { set } f^{\prime}(x)=0 \\
& 3 x^{2}-6 x-9=0 \\
& 3\left(x^{2}-2 x-3\right)=0 \\
& x^{2}-2 x-3=0 \\
& (x+1)(x-3)=0 \\
& x \\
& x+1=0 \\
& x-3=0 \\
& x=-1 \\
& x=3
\end{aligned}
$$

Schedule
TU NORMALS + OPTIMIZATION
W Review
Thur Quiz on calculus

What if you wanted the minimum material to make a cylinder with a required volume?

In this case you would have two variables (radius and height) and one fixed quantity (volume)

Think about Why is having two variables a problem?

In order to differentiate, you need an expression for the quantity you want to minimise (or maximise) in terms of just one variable

Working with a cylinder

First, use the fixed volume to eliminate one of the variables (either the height or radius)

When you have an expression for the quantity of material needed to make the cylinder in terms of just one variable, differentiate it and put the derivative $=0$

Solve this equation to find the value of the variable that gives a minimum (or maximum)

Then find the value of the other variable and the minimum (or maximum) that you require

Minimum material to make a can

Say you want to find the minimum metal needed to make a can to hold 500 ml (the same as $500 \mathrm{~cm}^{3}$)

$$
V=\pi r^{2} h
$$

$\begin{aligned} & \mathrm{SA}_{\text {of metal }}\end{aligned}=M=2 \pi r^{2}+2 \pi r / n$

$$
\begin{array}{lr}
M=2 \pi r^{2}+2 \pi r h & 500=\pi r^{2} h \\
M=2 \pi r^{2}+2 \cdot \pi \cdot\left(\frac{500}{\pi r^{2}}\right) & h=\left(\frac{500}{\pi r^{2}}\right) \\
M=2 \pi r^{2}+\frac{1000}{r} &
\end{array}
$$

$$
\begin{aligned}
& M=2 \pi r^{2}+2 \pi r h_{F} \quad 500=\pi r^{2} h \\
& M=2 \pi r^{2}+2 \pi\left(\frac{500}{\pi r^{3}}\right)^{-} \because \cdot h=\frac{500}{\pi r^{2}} \\
& M=2 \pi r^{2}+\frac{1000}{r} \\
& M=2 \pi r^{2}+1000 r^{-1} \\
& \frac{d M}{d r}=4 \pi r-1000 r^{-2} \\
& \text { or } 4 \pi r-\frac{1000}{r^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 4 \pi r^{3}-1000=0 \\
& 4 \pi r^{3}=1000 \\
& r^{3}=\frac{1000}{4 \pi} \\
& r=\sqrt[3]{\frac{1000}{4 \pi}}=4.30
\end{aligned}
$$

"the Box Problem"

Square corners are cut from a piece of 12 cm by 12 cm tinplate which is then bent into the form of an open dish. What size squares should be removed if the volume is to be a maximum?

Note: $0 \leqslant x \leqslant 6$

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathbf{V}(\mathbf{x}) & =(12-2 x)^{2} \times x \\
& =\left(144-48 x+4 x^{2}\right) \times x \\
& =144 x-48 x^{2}+4 x^{3}
\end{aligned} \\
& \left.\qquad \begin{array}{l}
V(x)
\end{array}\right)=4 x^{3}-48 x^{2}+144 x \\
& \text { We can graph to let our GDC find the } \\
& \text { maximum volume }
\end{aligned}
$$

The max volume will occur where the gradient is zero. Therefore, we need to find the derivative and set it to 0

$$
\begin{aligned}
\therefore \quad V^{\prime}(x)= & 144-96 x+12 x^{2} \\
0= & 12\left(x^{2}-8 x+12\right) \\
0= & 12(x-2)(x-6) \\
& x-2=0 \quad x-6=0 \\
& x=2 \quad x=6
\end{aligned}
$$

\therefore maximum volume occurs when $x=2 \mathrm{~cm}$
\therefore cut out 2 cm squares.

Assignment

(I) Day 4 Worksheet (both sides)
(2) Calculus packet: and p. 582...Review Set A..... 1-8

$$
\text { Sale } A \leq \text { PDF , Mr.C. }!!!
$$

