

$$y = a(x-10)^{2}+9$$

$$0 = a(x-10)^{2}+9$$

$$0 = a(x-10)^{2}+9$$

$$0 = a(x-10)^{2}+9$$

$$(x + 1) = a(x + 1)^{2} + 9$$

$$0 = a(x-10)^{2}+9$$

$$(x + 1) = a(x + 1)^{2} + 9$$

$$(x + 1)^{2} + 9$$

$$y = a (x - 10)^{2} + 9$$

$$y = 100 a + 9$$

$$y = -.09 (x - 10)^{2} + 9$$

$$y = -.09 (x - 10)^{2} + 9$$

$$y = -.09 (x - 10)^{2} + 9$$

Notes form 4.1.2 Day B

Consider the parabolic paths of two soccer penalty kicks, represented in the graph at right. One kick covers a horizontal distance of 20 yards and reaches a maximum height of 9 yards. The other kick covers a horizontal distance of 24 yards, but only reaches a maximum height of 6 yards. Find an equation that describes the path of each kick. $Y = -\frac{1}{24} \left(\chi - 12\right)^2 + 6$

Consider the parabolic paths of two soccer penalty kicks, represented in the graph at right. One kick covers a horizontal distance of 20 yards and reaches a maximum height of 9 yards. The other kick covers a horizontal distance of 24 yards, but only reaches a maximum height of 6 yards.

Find an equation that describes the path of each kick.

$$y = -\frac{1}{24} (x - 12)^{2} + 6$$

Notes form 4.1.2 Day B

 $(\overline{y}) = (\overline{y} - \overline{y})^2 - 3 = 1$

Use algebraic Strategies to solve

$$(\sqrt{2x+3})^{2} = (x)^{2}$$

 $2x+3 = x^{2}$
 $0 = x^{2}-7y-3$
 $\frac{1}{\sqrt{x}}$
 $x = -1$ $x = 3$
 $x = -1$

5= (x-2

Equations with radicals

called radical equations, commonly have solutions that have extraneous solutions

Every group needs a. Leader Runner Player (1 or 2)

(b) Are the solutions

$$a single number?$$

or
or be the coordinates
of a point?
 $20x + 1 = 3^{x}$
 $\chi_{=0} \chi_{=1}^{x} (0, t) (4, si)$

The original equation
$$20x + 1 = 3^{x}$$

only has one variable so the
solutions are the x-coordinates
of the points of intersection.
 $\chi = 0 \quad \chi = 4$

Monday	Tuesday	Wednesday	Thursday	Friday
13	14	15	16	17
Ch. 4 (4.1.2 Day 2) Equations with Extraneous solutions	CFr. 4 (4.1. 3) Multiple Solutions	Ch. 4 (4.1.4) Use Systems to Solve Problems	Сћ. 4. (4.2.1) Day 1 Inequalities	Сћ. 4 (4.2.1) Day 2 inequalites
20 Ch. 4 (4.2.2) Solving Problems using Systems	21 Review Ch. 4 Turn in Notebook today	22 Test on (h. 4 <u>Turn in all Logic Assignments</u>	23 No School Thanksgiving	24 No School
27	28	29	30	
Final Exam Review Day #1	Final Exam Review Day #2 Turn – in textbooks today	Final Exam Part I (Jowing Work)	Final Exam Part 2 (multiple choice) Today is the last day of the Trimbotar	No School
				Trimester 2 Starts Tuesday, Dec. 5

You will be given one equation to solve graphically with your calculator. (it will be unsolvable algebraically)

