Pick Up the
Warm Up

transformed
parabola

$$
y=x^{2}
$$

$$
y=a(x-h)^{2}+k
$$

Consider the parabolic paths of two soccer penalty kicks, represented in the graph at right. One kick covers a horizontal distance of 20 yards and reaches a maximum height of 9 yards. The other kick covers a horizontal distance of 24 yards, but only reaches a maximum height of 6 yards.

Find an equation that describes the path of each kick.

$y=x^{2}$

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& y=a(x-10)^{2}+9
\end{aligned}
$$

$$
\begin{aligned}
& y=a(x-10)^{2}+9 \\
& 0=a(20-10)^{2}+9 \\
& 0=100 a+9 \\
& \text { \& } \\
& a=-\frac{9}{100} \\
& =-.09 \\
& \text { Substitute in a } \\
& \begin{array}{c}
(20,0) \\
\pi
\end{array} \\
& y=\frac{-9}{100}(x-10)^{2}+9
\end{aligned}
$$

$$
\begin{aligned}
y=a(x-10)^{2}+9 & \begin{array}{l}
\text { Substitute in a } \\
\text { point on the curve } \\
\text { (not the vertex) }
\end{array} \\
=a(20-10)^{2}+9 & (20,0) \\
0 & =100 a+9
\end{aligned}
$$

Consider the parabolic paths of two soccer penalty kicks, represented in the graph at right. One kick covers a horizontal distance of 20 yards and reaches a maximum height of 9 yards. The other kick covers a horizontal distance of 24 yards, but only reaches a maximum height of 6 yards.

Find an equation that describes the path of each kick.

$$
y=\frac{-1}{24}(x-12)^{2}+6
$$

Consider the parabolic paths of two soccer penalty kicks, represented in the graph at right. One kick covers a horizontal distance of 20 yards and reaches a maximum height of 9 yards. The other kick covers a horizontal distance of 24 yards, but only reaches a maximum height of 6 yards.

Find an equation that describes the path of each kick.

$$
y=\frac{-1}{24}(x-12)^{2}+6
$$

$$
\begin{aligned}
& 4 m^{5} \cdot 3 m^{-7}=12 m^{-2}=\frac{12}{m^{2}} \\
& \frac{x^{2} x \cdot m^{1} \cdot m^{-7}}{w^{-7} \cdot x^{3} w^{2}} x=\frac{x^{4} w^{2} w}{1}=x^{4} w^{9} \\
& \left(\frac{m^{5} \cdot h^{-3}}{y}\right)^{-2} \frac{m^{-2}}{y^{-2}}=\frac{n^{5} y^{-2}}{m^{10}}
\end{aligned}
$$

If your HW recording sheet is out and you have a pen then check your solutions
let me know if there are questions afterwards

4-30. Consider the graphs of $f(x)=\frac{1}{2}(x-2)^{3}+1$ and $g(x)=$ $2 x^{2}-6 x-3$ at right. Homework Help
a. Write an equation that you could solve using points A and B. What are the solutions to your equation?
Substitute them into your equation to show that they work. $\frac{1}{2}(x-2)^{3}+1=2 x^{2}-6 x-3$
b. Are there any solutions to the equation in part (a) that do not appear on the graph? Explain.
c. Write an equation that you could solve using point C. What does the solution to your equation appear to be? Again, substitute your solution into the equation. How close was your estimate?

d. What are the domains and ranges of $f(x)$ and $g(x)$?

\square
(7) $(x-2)^{2}-3=1$

AlMs
Validate solutions because sometimes "good" solutions are "bad"

- Approximate solutions when an algebraic solution is not possible.

Use algebraic strategies to Solve

$$
\begin{gathered}
(\sqrt{2 x+3})^{2}=(x)^{2} \\
2 x+3=x^{2} \\
0=x^{2}-2 x-3 \\
\vdots \\
x=-1 x=3
\end{gathered}
$$

$$
\begin{aligned}
& x=3 \\
& x=-1
\end{aligned}
$$

We should have got two apparent solutions

$$
\begin{aligned}
& x=-1 \\
& x=3
\end{aligned}
$$

now do an algebraic check in the original equation

$$
\sqrt{2 x+3}=x
$$

check $x=-1$
check $x=3$

$$
\sqrt{2(-1)+3}=(-1)
$$

$$
\begin{gather*}
\sqrt{2(3)+3}=13 \tag{3}\\
\sqrt{6+3} \\
\sqrt{9} \\
3
\end{gather*}
$$

$\sqrt{2 x+3}=x$
check $x=-1$

$$
\sqrt{2(-1)+3}=(-1) \quad \sqrt{2(3)+3}=(3)
$$

$x=-1$ is
extraneous
check $x=3$

$$
3=3
$$

$$
x=3 \frac{i s}{\text { a }} \frac{\text { solvior }}{}
$$

$$
\sqrt{1}=(-1) \quad \sqrt{9}=3
$$

$$
\begin{aligned}
x & =3 \\
x & =-1(\text { extraneous })
\end{aligned}
$$

Validate Graphically

$$
{\underset{y}{y_{1}}}_{\sqrt{2 x+3}}^{y_{2}}
$$

Why did the extraneous solutions appear?

If the sideways parabola is completed, it would intersect at $X=-1$

The graph of $y=\sqrt{2 x+3}$ did not intersect because
 $\sqrt{2 x+3}$ has no negative values

Equations with radicals
called radical equations, commonly have solutions that have extraneous solutions

$$
5=\sqrt{x-2}
$$

Every group needs
Leader
Runner
Player (1 or 2)

Runners
Be prepared to show proof on part a
Leaders
Get a consensus answer on part b and be prepared to share it with the class.

$$
20 x+1=3^{x}
$$

(a)
what were the solutions?
How did you prove they were solutions?

$$
\begin{gathered}
x=0 \\
20(0)+1=3 \\
\\
\left\{\begin{array}{l}
0 \\
\xi
\end{array}\right.
\end{gathered}
$$

$$
\begin{aligned}
& x=4 \\
& 20(4)+1=3^{4} \\
& 80+1
\end{aligned} \sum_{81} \sum_{81} 88
$$

(b) Are the solutions a single number?
or
or be the coordinates of a point?

$$
\begin{aligned}
20 x & +1=3^{x} \\
x & =0 x+(48)
\end{aligned}
$$

The original equation $20 x+1=3^{x}$ only has one variable so the solutions are the x-coordinates of the points of intersection.

$$
x=0 \quad x=4
$$

move on to

$$
20 x+1=3^{x}
$$ C

(c)

$$
\begin{aligned}
& 20 x=3^{x}-1 \\
& x=0 \quad x=4
\end{aligned}
$$

$$
B . B .
$$

Your 2 worst were

1 question

You will be given one equation to solve graphically with your calculator. (it will be unsolvable algebraically)
4.... 22 -25, 27-28

26 a an optional problem, not for extra credit.... just for the challenge (fun) of it.
-

$$
0.572
$$

$$
3
$$

