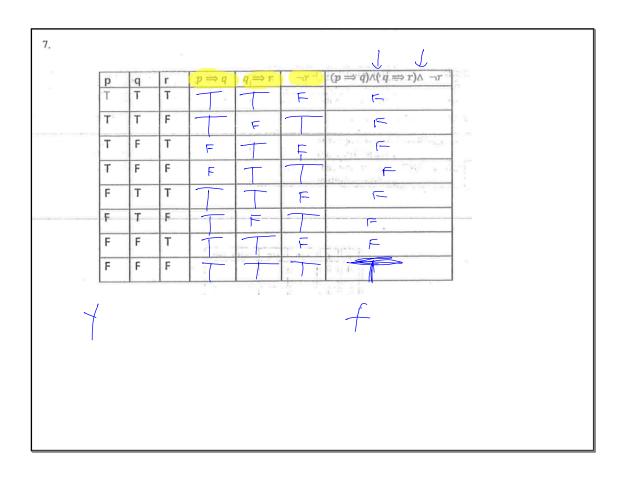

Warm Up - Pick Up the handout.



Logic Assignment 2
Were there any tautologies?

		-		
p	q	Λ . V	V	⇒ ⇔
T	Т			
T	F	1	(k)	
F	Т			
F	F			

	22	q ·	¬р	-79	$\neg p \land \neg q$
	p T	T	- IP	-19	3
- 1	((() () () () ()			-	187
Ì	T	F			
	F	Т			
	F	F			
١					
	р	q	$\neg q$	p V	$\neg q$
I					
	_				
	_	_			

P T		$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$
	q T					
T	F					
F	T					
F	F					

The Veterinarian has gathered the following data about the weight of dogs and the weight of

		0	20111	
	Heavy	Light		
Heavy	36	27	63	
Light	22	,35 ≈	57	
Total	58	62	120	

 $\frac{57.62}{120} = 29.45$

(2-1)(2-1)

The veterinarian wishes to test the following hypotheses.

 H_0 : A puppy's weight is independent of its parent's weight. H_1 : A puppy's weight is related to the weight of its parent.

 $\chi^2 = \sum \frac{(f_e - f_e)^2}{f_e}$

(a) The table below sets out the elements required to calculate the χ^2 value for this data.

	f _o	fc	$f_{\rm e} - f_{\rm o}$	$(f_c-f_o)^2$	$(f_{\rm e} - f_{\rm o})^2 / f_{\rm e}$
heavy/heavy	36	30.45	-5.55	30.8025	1.012
heavy /light	27	32.55	5.55	30.8025	0.946
light/heavy	22	27.55	5.55	30.8025	1.118
light/light	25	20	b /	24 112	4

(i) Write down the values of a, b, c, and d.

38 HIOH

(ii) What is the value of χ^2_{cale} for this data?

(1)

(iii) How many degrees of freedom exist for the contingency table?

(1)

A rumour spreads through a group of teenagers according to the exponential model

$$N = 2 \times (1.81)^{0.7t}$$

where N is the number of teenagers who have heard the rumour t hours after it first started.

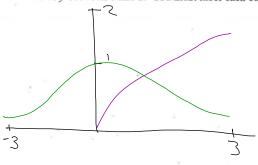
(a) Find the number of teenagers who started the rumour.

(2)

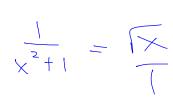
(b) Write down the number of teenagers who have heard the rumour 5 hours after it first started.

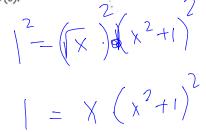
(1)

Two functions f(x) and g(x) are given by

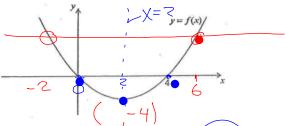


$$f(x) = \frac{1}{x^2 + 1},$$

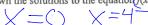

$$\frac{1}{\chi^2+1} = \sqrt{\chi}$$


(a) Sketo

Sketch the graphs of f(x) and g(x) together on the same diagram using values of x between -3 and 3, and values of y between 0 and 2. You must label each curve.



- (b) State how many solutions exist for the equation $\frac{1}{x^2+1} \sqrt{x} = 0$.
- (c) Find a solution of the equation given in part (b).



The following is the graph of the quadratic function y = f(x).

Write down the solutions to the equation f(x) = 0.

Write down the equation of the axis of symmetry of the graph of f(x).

The equation f(x) = 12 has two solutions. One of these solutions is x = 6. Use the symmetry of the graph to find the other solution.

(d) The minimum value for y is -4. Write down the range of f(x).

[4, 0]

Use Truth tables to Verify logical Statements being equivalent or not

including
De'Morgan's Law

Implication p > 8

Converse 9 -> P

Inverse 79 79

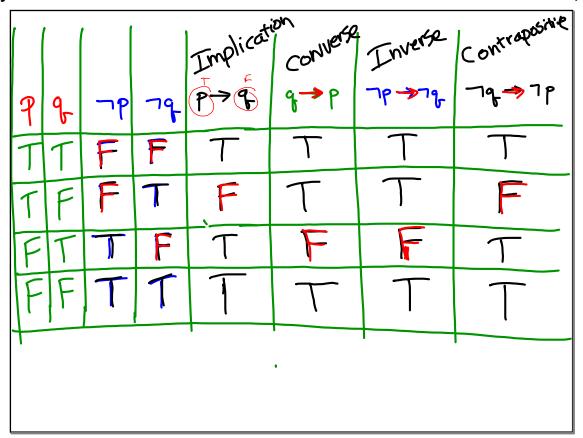
Contrapositive 79

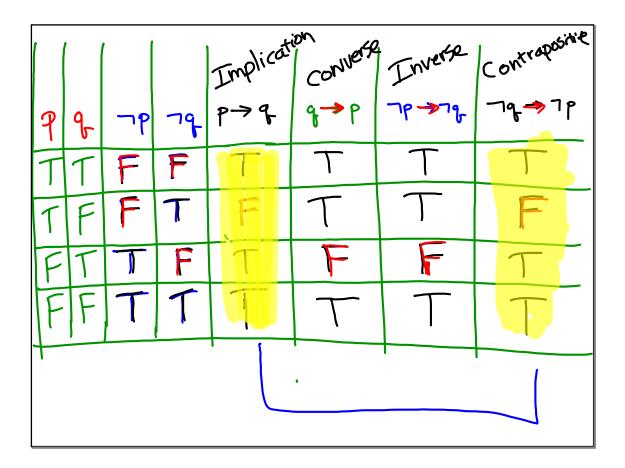
Implication is If &=6 then X=3

Converse. If X=3 then 2x=6

Therese If $2x \neq 6$, then $x \neq 3$

Contrapositive If X +> , then 2x +6


Implication is If &=6 then X=3


Converse. If x=3 then 2x=6

Therese If 1×46 , then 1×43

Contrapositive If X=3, then 2x =6

oria FTFF

Notes Day 3

Implication is If &=6 then X=3

Converse. If x=3 then 2x=6

Inverse If 1×46 , then 1×43

Contrapositive If $x\neq 3$, then $2x\neq 6$

We can use deMorgan's laws to help us to negate compound statements

Negate the following compound statement using precise language:

the class sings and Dalton cringes

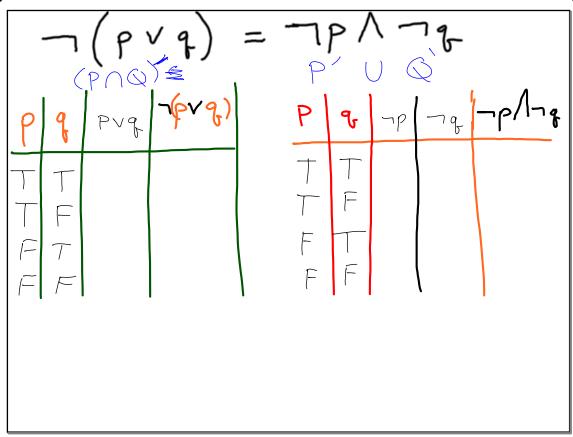
hey that statement is not true The first deMorgan's property

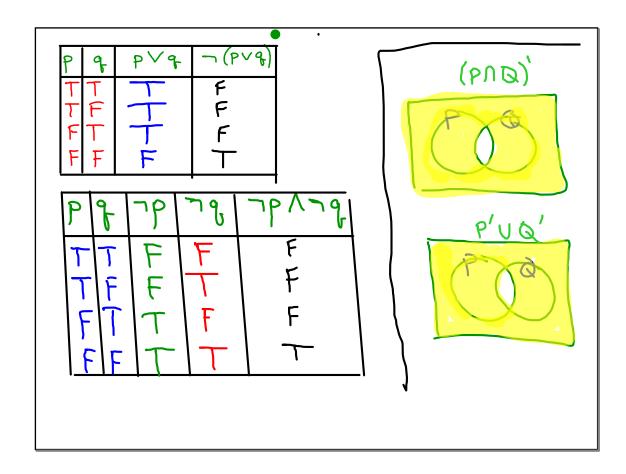
a) Negation of: the class sings and Dalton cringes

is: class not sing OR Dalton doesn't cringe

b) Negation of: 10 $\leq n \leq 20$

is:


The 2nd property
$$\neg (pvq) = \neg p \land \neg q$$


Negation of: Graffin jumps or Brenda sneezes

Will DeMorgan's Laws always work?

We can prove that two logical statements are equivalent by showing their truth tables are equivalent

$$\neg (P \vee q) = \neg P \wedge \neg q$$

Logic Assignment #3

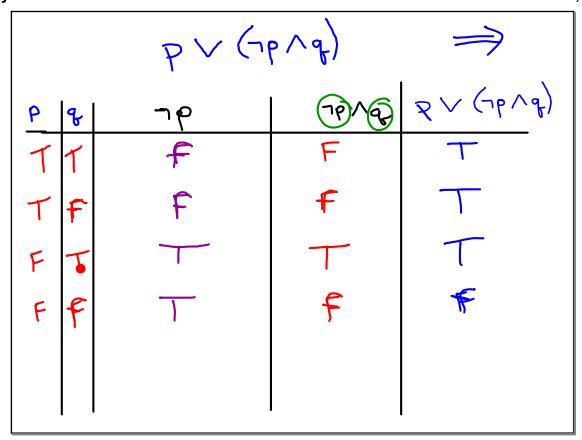
- o p.509..... 1ad, 3ae, 5b
- o p.504.....3c
- and construct your own truth table for:

pg 504 15C.... 3c

- **3** Use deMorgan's properties to find the negation of:
 - x < -1 or x > 7

$$\neg (p \land q) = \neg p \lor \neg q$$

$$\neg (p \lor q) = \neg p \land \neg q$$


negation $x \ge -1$ and $x \le 7$


PV(JP/q)	
	2 \ (¬p \ q)

		PV(JP/q)	
P	q		2 ~ (7p ~ q)

P ~ (7P / q)						
P	g		7919	5 ~ (~b~d)		

	PV(JP/q)							
P	g	76	7P19	5 ~ (~b~b)				

