pick Up the Warm Up

$$
\begin{aligned}
& \text { NW } \\
& \text { Tally }
\end{aligned}
$$

Single Variable Inequality
answer can be displayed on a number line

Solve directly
A) find boundary points (if possible)
B) TEST a point or two

Solve the inequality using either method or solve using both methods if you want the practice).

Boundary Point Method

$$
\frac{1}{2 x} \geq \frac{1}{2}-\frac{2}{5 x}
$$

Direct (if possible)

$$
\frac{1}{2 x} \geq \frac{1}{2}-\frac{2}{5 x}
$$

choose your favorite method

$6\|2 x+5\| \geqslant 6 x+24$	Boundary Point

\square
(4) Solve $(x-4)^{3}+6 \leq x-4$
is so complex we won't be able to use either method. So we'll have to be happy with an approximate answer.

Strategy: Break the L and R side into a system and analyze the graph.
$(x-4)^{3}+6 \leq x-4$

1. Graph to find the intersections of the Left and Right Functions
2. Find the boundary points), mark on a number line.
3. Test a point. Decide which area to shade.

Reminders

Ch 4 Test Information Sheet

Check the HW
completing the square to solve the equation
\#70

$10-101 a$

$$
\begin{gathered}
2 x+y=12 \\
x y=20
\end{gathered}
$$

$$
\text { (a) } 5-(y-3)=3 x \text { (b) } \quad 4(x+y)=-2
$$

67 a) $5-(y-3)=3 x$
$-(y-3)=3 x-5$
$-y+3=3 x-5$
$-1 y=3 x-8$
multiply all yerms by (-1)

$$
y=-3 x+8
$$

(b) $4(x+y)=-2$

$$
y=-x-\frac{1}{2}
$$

$68 A \quad(y-3)^{2}=2 y-10$

$$
\begin{aligned}
& (y-3)(y-3)=2 y-10 \\
& y^{2}-3 y-3 y+9=2 y-10 \\
& y^{2}-6 y+9=2 y-10 \\
& y^{2}-8 y+19=0
\end{aligned}
$$

so now try the Quadrate Formula

$$
a=1 \quad b=-8 \quad c=19
$$

$$
\begin{array}{r}
a=1 \quad b=-8 \quad c=19 \\
x=\frac{-() \pm \sqrt{()^{2}-4(x)}}{2()}
\end{array}
$$

69 d

$$
\begin{aligned}
& \frac{2 m^{2}+7 m-15}{m^{2}-16} \cdot \frac{m^{2}-6 m+8}{2 m^{2}-7 m+6} \\
& \frac{(m+5)(2 m-3)}{(m+4)(m-4)}<\frac{(m-2)(m-4)}{(m-2)(2 m-3)}
\end{aligned}
$$

$65 a \quad 3 x+2 \geq x-6$
Bound. Pus

$$
\begin{aligned}
3 x+2 & =x-6 \\
2 x+2 & =-6 \\
2 x & =-8 \\
x & =-4
\end{aligned}
$$

$$
\text { test } x=0
$$

$$
\begin{array}{lr}
65 b \quad 2 x^{2}-5 x<12 & 2(0)^{2}-5(0)<12 \\
2 x^{2}-5 x=12 & 0<12 \\
2 x^{2}-5 x-12=0 & \\
(2 x+3)(x-4)=0 & \\
\begin{array}{l}
1 \\
2 x+3=0 \\
x=-\frac{3}{2}
\end{array} \quad x=4 &
\end{array}
$$

$$
\begin{aligned}
& \text { 66(a) }|2 x+3|<5 \quad \text { find boundary point's } \\
& \begin{array}{l}
\text { by solving } \\
|2 x+3|=5
\end{array} \\
& 2 x+3<5 \quad 2 x+3>-5 \\
& \begin{array}{cc}
2 x+3=5 & 2 x+3=-5 \\
\vdots & \vdots \\
x=1 & x=-4
\end{array} \\
& \text { Test } x=-2 \\
& \begin{array}{c}
|2(-2)+3|<5 \\
|-4+3|<5 \\
|-1|<5
\end{array} \\
& \begin{array}{c}
|-1|<5 \\
\mid<5 \times \mathrm{men} \\
\hline
\end{array}
\end{aligned}
$$

Aim: Solve/graph
Two Variable Inequalities and systems

Is $x=-4$ solution to....

$$
y \geq 2 x^{2}+5 x-3
$$

Whaaaat?
true

In that case is $(-3,0)$ a solution ? to....

$$
\begin{aligned}
& y \geq 2 x^{2}+5 x-3 \\
& 0 \geq 2(-3)^{2}+5(-3)-3 \\
& 0 \geq 18-15-3 \\
& 0 \geq 0
\end{aligned}
$$

true
but there a few more an infinite number to be exact
well show them graphically

To solve a 2 -variable inequality:

1. Change to an equation.
2. Solve for y (if possible)
3. Graph the boundary function.
4. Then test a point, above or below,
5. Then shade the appropriate side.

Plan: well do a few
schematically
Thew on grid paper

Solve $y \geq 2 x^{2}+5 x-3$

$$
y=2 x^{2}+5 x-3
$$

graph
Test $(0,0)$

$$
\begin{aligned}
& 0 \geq 2(a)^{2}+5(e)-3 \\
& 0 \geq-3 \\
& \text { True }
\end{aligned}
$$

(C) Solve

A system
$y \geq 2 x+1$
$y \leq \frac{1}{2} x+3$

(D) with the help
$y \geq 0.2(x-5)^{2}-2$
$y \leq \frac{1}{2} x+4$

Now on
GRAph paper
Pick Up the classwork

Now the reverse
Determine the 2 -variable Inequalities
A.

B.

4 73ab, 74, 76-77, 84, 87

