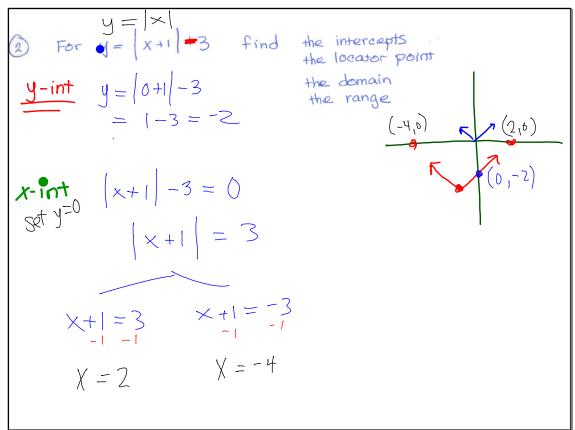


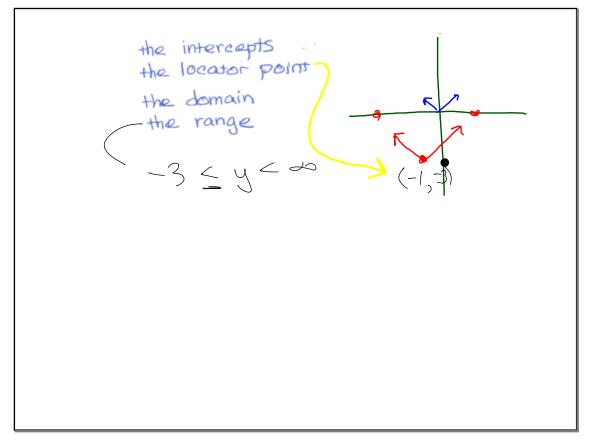
Pick up the Warm Up

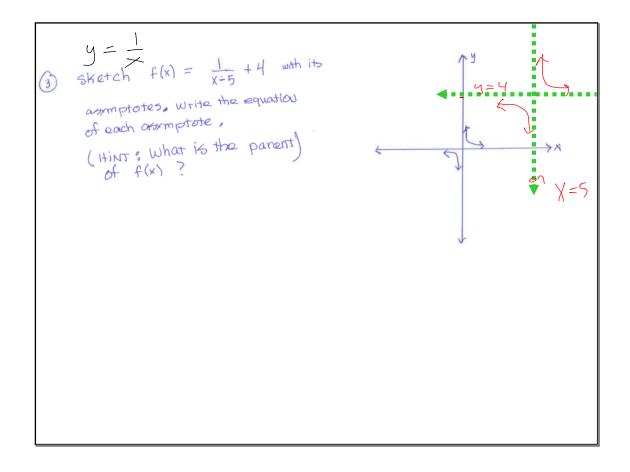
HW Questions

The Chapter 2 test is Friday

pdf




b. Then find the vertex by averaging the x-intercepts
$$2$$
 (h, k)
 $0+2=1$
 $y=-(x^2+2)$

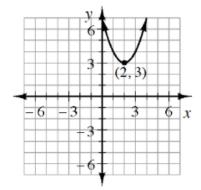

a. Then write the equation is graphing form

 $y=-(x^2+2)$
 $y=-($

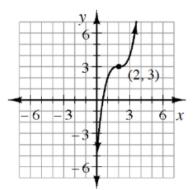
$$|x+1| - 3 = 0$$
 $|x+1| = 3$
 $|x+1| = 3$
 $|x+1| = 3$
 $|x+1| = -3$
 $|x+1| = -3$
 $|x+1| = -3$
 $|x+1| = -3$
 $|x+1| = -3$

Guppose
$$g(x) \in (X^2 + 2x)$$

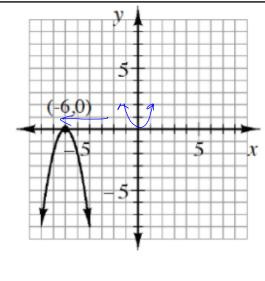
Create a function fly that is created by translating $g(x)$ five units to the right.


$$f(x) = (x-5)^2 + 2(x-5)$$

$$(x-5)^2 + 2x$$


$$2(x-5)$$

Questions on HW ?


a.

b.

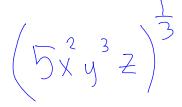
c.

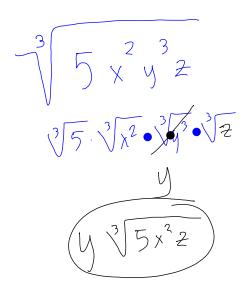
 $A = (x+p)_{S}$ $A = (x+p)_{S}$ $A = (x+p)_{S}$

$$y = (x+6)$$

$$= -S(X+P)_{S}$$

107 c


2-111.


a.
$$5^{-2} \cdot 4^{1/2}$$

b.
$$\frac{3xy^2z^{-2}}{(xy)^{-1}z^2}$$

c. $(3m^2)^3(2mn)^{-1}(8n^3)^{2/3}$

d.
$$(5x^2y^3z)^{1/3}$$

113a
$$y = 2(x-17)^2$$
 Solve for x

$$\sqrt{(x-17)^2} = \sqrt{\frac{y}{a}}$$

$$x-17 = \pm \sqrt{\frac{y}{a}}$$

$$x = 17 \pm \sqrt{\frac{y}{a}}$$

Solve for
$$\times$$

$$y + 7 = 3\sqrt{x+5}$$

Test Information

Analyze
Transformations of
Functions

(1) Parent Graph Name: Absolute Value

a) Parent Equation:

y= |x|

b) Description of Transformation: negative orientation with a vertical stretch of 3, translated 2 units to the right

c) Sketch Transformed Graph, T(x)

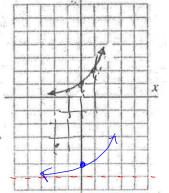
(Parent is already shown)

d Write coordinates of the new locator point. (\geq, \circ)

e) Write Transformation function, T(x)

a) List equation(s) of any asymptotes of T(x) h) Describe any symmetry \bigvee list equation(s) of any asymptotes of T(x) h) Describe any symmetry \bigvee list equation(s) of any asymptotes of T(x) h) Describe any symmetry \bigvee list equation(s) of any asymptotes of T(x) h) Describe any symmetry \bigvee list equation(s) of any asymptotes of T(x) h) Describe any symmetry \bigvee list equation(s) of any asymptotes of T(x) h) Describe any symmetry \bigvee list equation(s) of any asymptotes of T(x) h) Describe any symmetry \bigvee list equation(s) of any asymptotes of T(x) h) Describe any symmetry \bigvee list equation(s) of any asymptotes of T(x) h) Describe any symmetry \bigvee list equation(s) of any asymptotes of T(x) h) Describe any symmetry \bigvee list equation(s) of any asymptotes of T(x) has a sum of T(x) has a sum of T(x) and T(x) has a sum of T(x) has a

2) Parent Graph Name: ExpoNential Growth


(4) Parent Equation:

y=2*

(A) Parent Equation:

b) Description of Transformation:

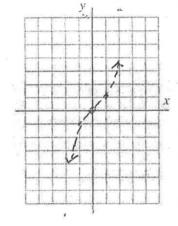
Translate down 6 UNITS

- Sketch Transformed Graph, T(x)(Parent is already shown)
- Write coordinates of the new locator point. V_{f}^{2} in S^{2} Write Transformation function, T(x)

) List equation(s) of any asymptotes of T(x) h) Describe any symmetry

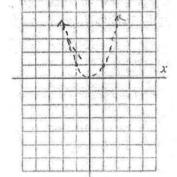
Cubic Parent Graph Name:

- a) Parent Equation:
- b) Description of Transformation:



- d) Write coordinates of the new locator point.
- e) Write Transformation function, T(x)

g) List equation(s) of any asymptotes of T(x) h) Describe any symmetry


Parent Graph Name:

Parabola

- h) Parent Equation:
- i) Description of Transformation:
- Sketch Transformed Graph, T(x)(Parent is already shown)
- k) Write coordinates of the new locator point.
- Write Transformation function, T(x)

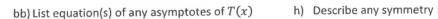
n) List equation(s) of any asymptotes of T(x) h) Describe any symmetry

m) List domain of T(x) _____List range of T(x) _____

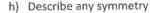
Parent Graph Name:

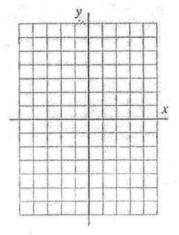
Hyperbola (reciprocal)

- o) Parent Equation:
- p) Description of Transformation: Translate 3 Units right and 5 units up
- q) Sketch Transformed Graph, T(x)
- r) Write coordinates of the new locator point.
- s) Write Transformation function, T(x)

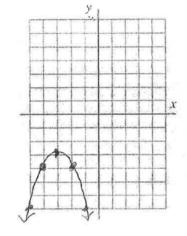

- t) List domain of T(x) _____List range of T(x) _____
- u) List equation(s) of any asymptotes of T(x) h) Describe any symmetry

1		7
D		j
	p	0


Parent Graph Name:


- v) Parent Equation:
- w) Description of Transformation:
- x) Sketch Transformed Graph, T(x)(Parent is already shown)
- y) Write coordinates of the new locator point.
- z) Write Transformation function, T(x)

aa) List domain of T(x) _____List range of T(x) ____



Starting from graph

Name

Parent Graph Name:

- a) Parent Equation:
- b) Description of Transformation:
- c) Sketch Transformed Graph, T(x)(Parent is already shown)
- d) Write coordinates of the new locator point.
- e) Write Transformation function, T(x)

f) List domain of T(x) _____List range of T(x) ____

g) List equation(s) of any asymptotes of T(x) h) Describe any symmetry

work backwards Parent Graph Name:

- h) Parent Equation:
- i) Description of Transformation:
- j) Sketch Transformed Graph, T(x)(Parent is already shown)
- k) Write coordinates of the new locator point.
- I) Write Transformation function, T(x)

m) List domain of T(x) _____List range of T(x) _

n) List equation(s) of any asymptotes of T(x) h) Describe any symmetry

	$(3x^2)$	$(10x^4)$			2,
2	Iren	a Sendle	r was born in	Poland in 1910.	
	a.	13x8	Krakow		
	b.	30x8	Lodz		
	c.	30x6	Warsaw		
		0071			