Pick Up the Warm Up
Do not use a Calculator (except for to check your answers)

HW Help
Hotline

Shifts to the right 2 units and down 5 units.

$$
\begin{gathered}
y=(x-2)^{2}-5 \\
y=(x+3)^{2}+1 \\
y=(x)^{2}-4
\end{gathered}
$$

Shifts to the left 3 units and up 1 unit.

Shifts down 4 units.

Shifts right 10.9 units.

$$
y=(x-10.9)^{2}
$$

Stretched vertically by a factor of 2.5 and shifted 9.8 units left and 8 units down.

$$
y=2.5(x+9.8)^{2}-8
$$

Compressed vertically by a factor of 0.4 and shifted 7.3 units to the right.

$$
y=0.4(x-7.3)^{2}
$$

\qquad

$$
\begin{aligned}
& =\sqrt{p i 22 a^{2}} \\
& =\text { piz2a}
\end{aligned}
$$

Example of a

$$
y=x^{2}
$$

for a quadratic function

Example or a Make Transformations
Parent Graph Mat

$$
y=a(x-h)^{2}+k
$$

$$
y=x^{2}
$$

for a quadratic function

Example of a
MAKe Transformations
Parent Graph

$$
y=a(x-h)^{2}+k
$$

$$
\frac{1}{\curvearrowleft} \quad y=-\frac{1}{2}(x+3)^{2}-7
$$

$$
y=x^{2}
$$

for a quadratic function

Example or a
Make Transformations
Parent Graph

$$
y=a(x-h)^{2}+k
$$

$$
y=x^{2}
$$

for a quadratic

$$
\text { y) } y=(x+4)^{2}
$$ function

$$
\frac{\curvearrowleft}{\curvearrowleft} y=-\frac{1}{2}(x+3)^{2}-7
$$

Example or
Make Transformations
Parent Graph

$$
y=a(x-h)^{2}+k
$$

K general

$$
y=-\frac{1}{2}(x+3)^{2}-7
$$

$$
y=x^{2}
$$

$$
\text { If } \quad y=(x+1)^{2}
$$

for a quadratic function

$$
\Downarrow \quad y=1.1(x-4)^{2}-5
$$

\square

New Parent \rightarrow Transaction \rightarrow form
GOAL. Transform any function using same techniques
TODAY'S AIN:

$$
y=x^{3}
$$

You'll experiment with
Transforming $y=x^{3}$

QUICK SKetch

$$
y=x^{3}
$$

On a large piece of graph paper

- keep each square at 1 unit
(a) Graph $y=x^{3}$
(b) With your group discuss and write down the domain and range.
(c) Label any special points or asymptotes (if any).

Can make one darker

$$
\begin{aligned}
& Y_{1}=\longleftarrow \quad \begin{array}{c}
\text { experimental } \\
\text { function }
\end{array} \\
& -Y_{2}=x^{3}
\end{aligned}
$$

a) Find and graph an equation that will shift(translate) $y=x^{3}$ 8 units left. (label the equation). next to its graph.

What are the coordinates of the special point (,)

(b) shift $y=x^{3}$ down 8 UNATS and vertically shrink by a factor of 002

- Graph with a dotted lie
- label the equation
C) Find and graph of a transformation that is translated 7 units right, down 4, and with a negative orientation
(d) Transform $y=x^{3}$ so it flips upside down
(but you dort need to graph it.
\square

2-50(b) $y=x^{x^{2}-4 x+9}$

$$
y=x^{x^{2}}-2 x
$$

(d) $y=x^{2}+7 x-2$

$$
y=\begin{array}{|l|l|}
\hline x^{2} & \frac{7}{2} x \\
\hline \frac{7}{2} x & \\
\hline
\end{array}
$$

$2-59$ a) figures with lines
b) with 2 lines of Sym

c) infinite?

$$
2-60 \quad y=3 x-1 \quad 2 y+5 x=53
$$

2-6) Lead foot Lentil 80 mph
a) how long for 50 miles

$$
\begin{aligned}
d & =r t \\
50 & =80 \cdot t \\
t & =\frac{50}{80}=.625 \text { hours } \\
& 37.5 \mathrm{~min}
\end{aligned}
$$

(b) $50 \begin{aligned} & \text { miles at } \\ & \text { speed limit }\end{aligned}$

$$
\begin{aligned}
& d=r+\quad 50= 65 \cdot t \\
& \leqslant \\
& .77 \text { hours } \\
& 46.14 \mathrm{~min}
\end{aligned}
$$

(c) Speeding ticket $\# 200$
what would be her cost per minute of the time saved by speeding?

$$
\begin{array}{r}
.77 \text { hows }-.62 \text { hows }=.145 \text { hours } \\
\approx 8.7 \text { mine }
\end{array}
$$

So $\frac{\mathbb{W}_{200}}{8.7}$

$$
\approx \$ 22 \frac{.99}{\mathrm{~min}}
$$

$2-62$
(a)

$$
\begin{aligned}
& x^{2}=5^{2}+6^{2} \\
& x=\sqrt{25+36} \\
& x=\sqrt{61}
\end{aligned}
$$

(b)
$m \angle C=$

(c)

2-63
(a) house purchased for ${ }^{\dagger} 120,000$ annual appreciation
(b) bacteria $180 \quad 22^{\bullet \bullet}$ per hour

On the road to becoming.....

Standard form: $y=a x^{2}+b x+c$

Graphing form: $y=a(x-h)^{2}+k$
Factored form: $y=a(x+b)(x+c)$.

AIM* 1

Perform Mathematical ${ }^{-T^{\text {The }} \text { e }}$ Modeling with Parabolas

\qquad

$y=x^{2}$
$y=a(x-4)^{2}+3$
$3=-16 a$
Use (8,0)
$a=\frac{-3}{16}$

$$
\begin{aligned}
& 0=a(8-4)^{2}+3 \\
& 0=16 a+3
\end{aligned} \quad y=-\frac{3}{16}(x-4)^{2}+3
$$

$$
\begin{array}{ll}
y=x^{2} & \\
y=a(x)^{2}+3 & y=-\frac{3}{16}(x)^{2}+3 \\
\text { use }(-4,0) & (0,3) \\
0=a(-4)^{2}+3 & \\
0=16 a+3 \\
-3 & \\
-3=16 a
\end{array}
$$

$$
y=a(x-4)^{2}+3
$$

$$
y=a(x-h)^{2}+k \quad y=a(x-h)^{2}+k
$$

When Ms. Bibbi kicked a soccer ball, it traveled a horizontal distance of 150 feet and reached a height of 100 feet at its highest point. Sketch the path of the soccer ball and find an equation of the parabola that models it.

At the skateboard park, the hot new attraction is the U-Dip, a cement structure embedded into the ground. The cross-sectional view of the U-Dip is a parabola that dips 15 feet below the ground. The width at ground level, its widest part, is 40 feet across. Sketch the cross-sectional view of the U Dip, and find an equation of the parabola that models it.

Model:

$$
\begin{aligned}
& y=a(x-20)^{2}-15 \\
& 0=a(40-20)^{2}-15 \\
& 0=a \cdot 400-15 \\
& 15=400 a \\
& a=\frac{15}{400}=\frac{3}{80}=0375
\end{aligned}
$$

B.B.

Mid Chapter
check

Assignment

2- 69-71, 72a, 73-74, 75a, 91
graph paper
needed for \#70

$$
p d f \rightarrow
$$

