

Questions from Geom/Trig packet out end of period as time permits. Can turn in by Wednesday (rather than tomorrow)

The Height of Happiness

- Survey
- · Happieness Index
 - . measured theight is reported height

Military Might and Quality of Life around the world

MilPtary

Debt GDP

MIGTAYX Expenditure

Let-evacy

Does winning the "draw" in Lacrosse really matter?

Read, Read, Read

An investigation of children in the 50 states to see if early reading rates produces a more highly educated population.

Sets, Venn Diagrams

and Probability

Over the next two weeks there will be reduced outside of class homework so you can spend time establishing a project focus, narrow it down, and write your introduction (P3) by Friday Oct. 20th **Or** / before.

There will a combination of in class assignments and out of class assignments, occasionally no homework or shorter assignments.

Many of these, including in-class assignments, will get recorded on

A city has three newspapers A, B, and C. Of the adult population, 1% read none of these, 36% read A, 40% read B, 52% read C, 8% read both A and B, 11% read both B and C, and 13% read all three newspapers. What percentage of the adult population read:

- a) Newspaper A only?
- b) Newspaper B or newspaper C?
- c) Newspaper A or B or C?

The work we will do in this unit will enable us to organize the this information and deal with questions like the newspaper problem.

but first we need to:

- · Understand Types of Number Sets
- . Use Set Vocabulary
- · Write in Set Builder Notation

Pick Up W.S. #1

Warm UpSets of Numbers
(look at your Notation List at the end of your Formula Packet)
List the factors of 10:
List the multiples of 3:
(look at your Notation List at the end of your Formula Packet) List the factors of 10: List the multiples of 3: List the first six prime numbers: 2, 3, 5, 7, 11, 13 List the first five numbers in the set, N: List a variety of numbers in the set, Z:
List the first five numbers in the set, \mathbb{N} :
List a variety of numbers in the set, $ \mathbb{Z} \colon$
List a variety of numbers in the set, $$
List a few numbers that are $\underline{\mathtt{not}}$ in the set, \mathbb{R} :

Warm Up -----Sets of Numbers

(look at your Notation List at the end of your Formula Packet)

List the factors of 10: $\frac{1}{2}$, $\frac{5}{5}$, $\frac{10}{10}$

List the multiples of 3: $3,6,9,12,15,\ldots$

List the first six prime numbers: 2, 3, 5, 7, 11, 13

List the first five numbers in the set, \mathbb{N} : 0, 1, 2, 3, 4

List a variety of numbers in the set, \mathbb{Z} : $\frac{7}{3}$ $\frac{-3}{0}$ $\frac{62}{162}$

List a variety of numbers in the set, $Q: \frac{2}{3} - 0.23 + 6 + \frac{21}{3} = 0.1\overline{2}$

List a few numbers that are <u>not</u> in the set, \mathbb{R} : $\sqrt{-6}$ 3i 5-4?

a number in ${f R}$ but not in any other above $\ref{eq:R}$

Warm Up :

Quietly read through HH pp. 18-19 up to example 1

then answer as many questions as you can on the back side "What Are Sets?"

Set		
Subset	- \	passels as kept
Union of two sets		'Rot i
omplement of a set		
ersection of two sets		
Element		

Set	A collection of numbers or objects
Subset	A portion of a larger set
Union of two sets	A 18st of all elements of the combinued sets
Complement of a set	The elements <u>not</u> in the set.
Intersection of two sets	The elements that belong to both sets
Element	A member

And now state what is meant by each of these symbols in the context of set notation

U	first Set or 2nd set or both
n	first set AND 2nd Set
€	is an element of
<u> </u>	proper subset

Examples

Give an example of two sets of people that would have no intersection.

Give another where you would expect an intersection.

Now, a third where one would be a subset of another.

example

Let's make a union of sets A and B.

 $A \cup B$

$$A = \{4, 7, 10, 13\} + B = \{-1, 0, 1, 2\}$$

{-1,0,1,2,4,7,10,13}

When giving a list showing the elements of a set,

use curly brackets:

_earning Check

Consider the sets $A = \{2,3,5,7\}$ and $B = \{2,4,6,8\}$. Which of the following are true?

$$\{5\} \subseteq A ?$$

2,3,5,7

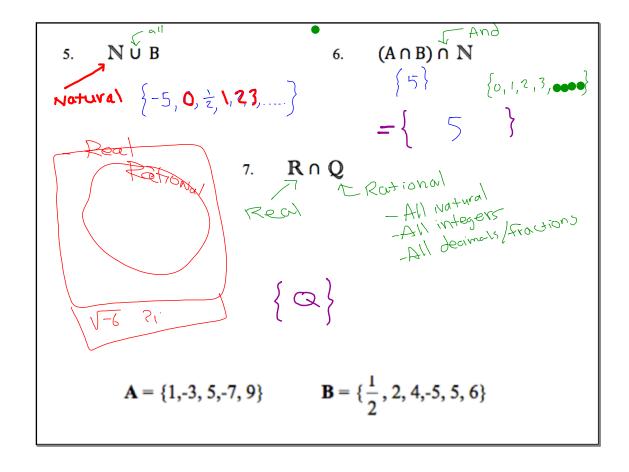
Go back to the front side

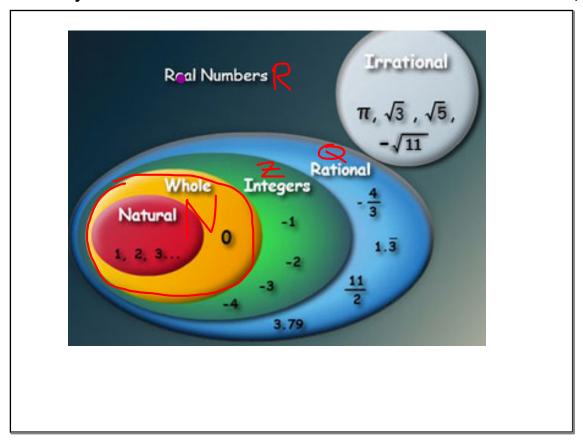
Given two sets:

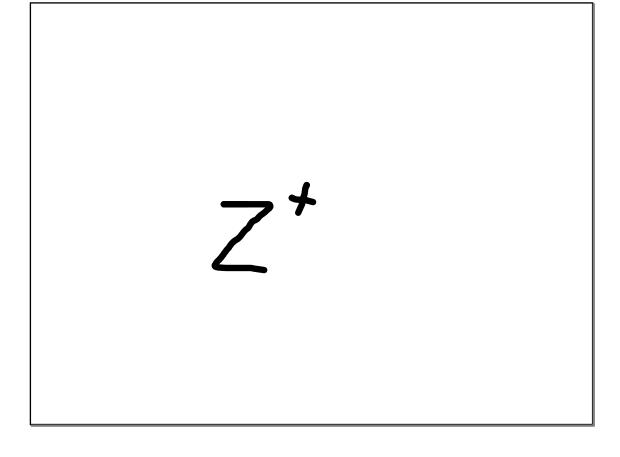
$$\mathbf{A} = \{1, -3, 5, -7, 9\}$$

$$A = \{1,-3, 5,-7, 9\}$$
 $B = \{\frac{1}{2}, 2, 4,-5, 5, 6\}$

A or B or both Find the following.


1.
$$A \cup B$$


$$\begin{cases} -7, -5, -3, \frac{1}{2}, 1, 2, 4, 5, 6, 9 \end{cases}$$


$$= \begin{cases} 5 \end{cases}$$

5. N U B

- 6. $(A \cap B) \cap \mathbb{N}$
- 7. R∩Q

B.B.

Set Builder Notation Tead page 69 and 70

$$A = \{3,7,10,13,16\}$$

$$A = \{x \mid x \in Z, -2 \leqslant x \leqslant 4\}$$
the set of all

reads "the set of all x such that x is an integer between -2 and 4, including -2 and 4."

Pick up WS #2

do A and B and C

For the following sets:

- i Write down the meaning of the set builder notation.
- ii If possible, list the elements of A. iii Find n(A). iv Is A infinite?

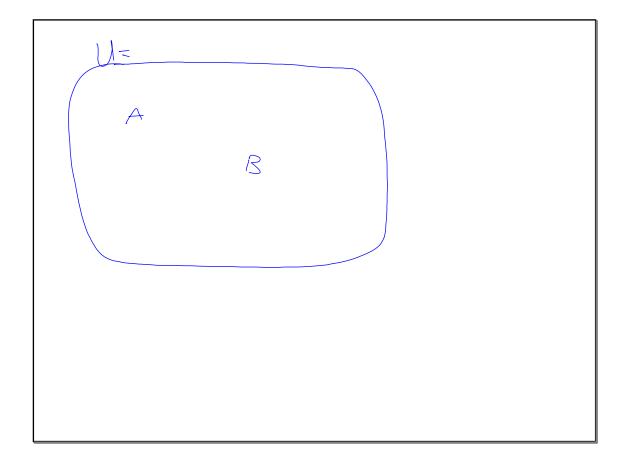
$$A = \{x \mid x \in Z, -1 \leqslant x < 27\}$$

- (1) the set of all x such that x is an integer between -1 and 7 including -1
- (11) $A = \{-1, 0, 1, 2, 3, 4, 5, 6\}$
- n(A) = 8

For the following sets:

- i Write down the meaning of the set builder notation.
- ii If possible, list the elements of A. iii Find n(A). iv Is A infinite?

$$A = \{x \mid x \in Z, -1 \le x < 7\}$$


- The set of all x such that x is an integer from -1 to 6.
- $A = \{-1, 0, 1, 2, 3, 4, 5, 6\}$
- \mathbb{R}^{\bullet} $\mathbb{A} = 8$
- iv finite

Write in set builder notation:

The set of all rational numbers between 2 and 3, inclusive.

$$\left\{ \chi \mid \chi \in Q \right\}$$

Universal Sets

Complements of Sets

The symbol U is used to represent a universal set.

$$U = \{x \mid x \in N, \quad \mathbf{1} \leqslant x \leqslant \mathbf{10}\}$$

COMPLEMENTARY SETS

If the universal set is $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and $A = \{1, 3, 5, 7, 8\}$ then the

complement of A, denoted A' is $A' = \{2, 4, 6\}$.

The **complement** of A, denoted A'

is the set of all elements of U

which are not in A

D

If $U = \{x \mid x \in Z, \ 0 \leqslant x \leqslant 8\}$, $A = \{x \mid x \in Z, \ 2 \leqslant x \leqslant 7\}$ and $B = \{x \mid x \in Z, \ 5 \leqslant x \leqslant 8\}$ list the elements of:

If $U = \{x \mid x \in Z, \ 0 \le x \le 8\}$, $A = \{x \mid x \in Z, \ 2 \le x \le 7\}$ and $B = \{x \mid x \in Z, \ 5 \le x \le 8\}$ list the elements of:

$$A = \{2, 3, 4, 5, 6, 7\}$$

$$A' = \{0, 1, 8\}$$

$$B = \{5, 6, 8\}$$

$$A \cap B' = \{2, 3, 4, 5, 6, 7\}$$

$$A \cap B' = \{2, 3, 4, 5, 6, 7, 8\}$$

$$A \cap B' = \{2, 3, 4, 5, 6, 7, 8\}$$

Workshoet

Assignment:

WS: Assignment #1 part worksheet/part textbook