

Questions from Geom/Trig packet at end of period as time permits.

Can turn in by Wednesday (rather than tomorrow)
(1) On the way to the library use the HW Tally as necessary.
(2) I Go to the LIBRARY to check out The soft cover
Mathematical Studies textbook
Write your name on the inside back cover of your book.

The Height of Happiness

- Survey
- Happieness Index
- measured Height us, reported height

Military Might and Quality of Life around the world

Military Size	Debt
MIStary	
Expenditure	GDP

Does winning the "draw" in Lacrosse really matter?
Read, Read, Read

An investigation of children in the 50 states to see if early reading rates produces a more highly educated population.

Sets, Venn Diagrams

tHoth textbook
Ch. 1, 4, 13

Over the next two weeks there will be reduced outside of class homework so you can spend time establishing a project focus, narrow it down, and write your introduction (P3) by Friday Oct. 20th or before.

There will a combination of in class assignments and out of class assignments, occasionally no homework or shorter assignments.

Many of these, including in-class assignments, will get recorded on

> A city has three newspapers A, B, and C. Of the adult population, 1% read none of these, 36% read $A, 40 \%$ read $B, 52 \%$ read C, 8% read both A and $B, 11 \%$ read both B and C, and 13% read all three newspapers. What percentage of the adult population read:
a) Newspaper A only?
b) Newspaper B or newspaper C ?
c) Newspaper A or B or C ?

The work we will do in this unit will enable us to organize the this information and deal with questions like the newspaper problem.
but first we need to:

- Understand Types of Number Sets
- Use Set Vocabulary
- Write in Set Builder Notation

Pick Up
 W.S. \#1

Warm Up ------Sets of Numbers

(look at your Notation List at the end of your Formula Packet)
List the factors of 10 : \qquad
List the multiples of 3:
List the first six prime numbers:

List the first five numbers in the set, \mathbb{N} : \qquad

List a variety of numbers in the set, \mathbb{Z} : \qquad

List a variety of numbers in the set, Q: \qquad
List a few numbers that are not in the set, \mathbb{R} : \qquad

Warm Up ------Sets of Numbers

(look at your Notation List at the end of your Formula Packet)
List the factors of 10 :

List the multiples of $3: 3,6,9,12,15, \ldots$.
List the first six prime numbers: $2,3,5,7,11,13$
List the first five numbers in the set, $\mathbb{N}: 0,1,2,3,4$
List a variety of numbers in the set, $\mathbb{Z}: \begin{array}{lllll}7 & -3 & 162 & -11\end{array}$

List a variety of numbers in the set,
Q: \qquad 0.12

List a few numbers that are not in the set, $\mathbb{R}: \sqrt{-6} \quad 3 i \quad 5-4 i$
a number in \mathbb{R} but not in any other above ??

warm Up:
 Quietly read through HH
 pp. 18-19
 up to example 1

then answer as many questions as
you can on the back side
"What Are Sets?"

(
 What are sets?

Definitions

In the table below, define the terms on the left hand side

Set	
Subset	
Union of two sets	
Complement of a set	
Intersection of two sets	
Element	

§ What are sets?

Definitions

In the table below, define the terms on the left hand side

set	A collection of numbers or objects
subset	A portion of a larger set
Union of two sets	A list of all elements of the combined sets
complement of a set	The elements not in the set.
Intersection of two sets	The elements that belong to both sets
Element	A member

And now state what is meant by each of these symbols in the context of set notation

u	first Set or $2^{\text {nd }}$ set or both	
n	first set AND $2^{\text {nd }}$ set	
ϵ	is an element of	
\subseteq	proper subset	

Examples

Give an example of two sets of people that would have no intersection.

Give another where you would expect an intersection.

Now, a third where one would be a subset of another.

1

Let's make a union of sets A and B.
$A \cup B$

$$
A=\{4,7,10,13\}+B=\{-1,0,1,2\}
$$

$$
\{-1,0,1,2,4,7,10,13\}
$$

- When giving a list showing the elements of a set,

use curly brackets:

$$
\text { e.g. } A=\{3,6,9,12\}
$$

$$
\begin{aligned}
& \text { Learning } \\
& \text { Check }
\end{aligned}
$$

Consider the sets $A=\{2,3,5,7\}$ and $B=\{2,4,6,8\}$. Which of the following are true?
$3 \in A$?
$4 \in A$?

$$
2,3,5,7
$$

$\{5\} \subseteq A$?
$\{5\} \subset A$?

Go back to the front side

Given two sets :
 $$
\mathbf{A}=\{1,-3,5,-7,9\} \quad \mathbf{B}=\left\{\frac{1}{2}, 2,4,-5,5,6\right\}
$$

A or B or both
Find the following.

1. $A \cup B$
$\left\{-7,-5,-3, \frac{1}{2}, 1,2,4,5,6,9\right\}$

Natural

$$
\{2,4,5,6\}
$$

2. $A \sim_{B}^{A}$ and B
$=\{5\}$
3. $\quad \mathbb{Z} \cap \mathrm{A}$ Tintegers

$$
\{-7,-3,1,5,9\}
$$

5. $\quad \mathbb{N} \cup B$
6. $(A \cap B) \cap \mathbb{N}$

7. $\quad R \cap Q$

7. $\quad \mathrm{R} \cap \mathrm{Q}$

Real $\begin{array}{r}\text { Rational } \\ \text { - All Natural }\end{array}$

$$
\mathbf{A}=\{1,-3,5,-7,9\} \quad \mathbf{B}=\left\{\frac{1}{2}, 2,4,-5,5,6\right\}
$$

$$
\begin{aligned}
& A=\{3,7,10,13,16\} \\
& n(A)=5
\end{aligned}
$$

$$
A=\{1 \quad\}
$$

\[

\]

reads "the set of all x such that x is an integer between -2 and 4 , including -2 and $4 . "$

Pick up WS \#2
do A and B and C

A
Finite or infinite?

$$
\begin{aligned}
& \{x \mid x \in Q, 4 \leq x \leq 8\} \\
& \{x \mid x \in Z, 4 \leq x \leq 8\}
\end{aligned}
$$

For the following sets:
i Write down the meaning of the set builder notation.
ii If possible, list the elements of A . iii Find $n(\mathrm{~A})$.
iv Is A infinite?

$$
\mathrm{A}=\{x \mid x \in Z, \quad-1 \leqslant x<27\}
$$

(i) the set of all x such that x is an integer between -1 and 7 including -1

$$
\text { (ii) } A=\{-1,0,1,2,3, \infty, 5,6\}
$$

(n) $n(A)=8$ iv

B

For the following sets:
i Write down the meaning of the set builder notation.
ii If possible, list the elements of A . iii Find $n(\mathrm{~A})$. iv Is A infinite?

$$
\mathrm{A}=\{x \mid x \in Z, \quad-1 \leqslant x<7\}
$$

i the set of all x such that x is an integer from -1 to 6 .
$\because A=\{-6,8,1,2,3,4,5,6\}$
ri

$$
n A=8
$$

iv

Write in set builder notation:

The set of all rational numbers between 2 and 3 , inclusive.

$$
\begin{aligned}
& \{1 \\
& \{x \mid x \in Q, 2 \leq x \leq 3\}
\end{aligned}
$$

\square

Universal Sets Complements of Sets

The symbol U is used to represent a universal set.

$$
\mathrm{U}=\{x \mid x \in N, \quad \mathbb{1} \leqslant x \leqslant \mathbb{N}\}
$$

COMPLEMENTARY SETS
If the universal set is $U=\{1,2,3,4,5,6,7,8\}$ and $\mathrm{A}=\{1,3,5,7,8\}$ then the complement of A , denoted A^{\prime} is $\mathrm{A}^{\prime}=\{2,4,6\}$.

The complement of A, denoted A^{\prime}
is the set of all elements of U
which are not in A

D
If $\mathrm{U}=\left\{x \mid x \in Z, \mathrm{O}_{0}^{\prime} \leqslant x \leqslant 8\right\}, \quad \mathrm{A}=\{x \mid x \in Z, 2 \leqslant x \leqslant 7\}$ and $\mathrm{B}=\{x \mid x \in Z, 5 \leqslant x \leqslant 8\}$ list the elements of:

$$
\begin{array}{ll}
A=\{2,3,4,5,6,7\} & A \cap B=\{5,6,7\} \\
A^{\prime}=\{0,1,8\} & A \cup B=\{2,3,4,5,6,7,8\} \\
B=\{5,6,7,8\} & A \cap B^{\prime}=\{2,3,4\} \\
B^{\prime}=\{0,1,2,3,4\} &
\end{array}
$$

$\mathrm{B}=\{x \mid x \in Z, 5 \leqslant x \leqslant 8\}$ list the elements of:

$$
\left.\begin{array}{ll}
A=\{2,3,4,5,6,7\} & A \cap B=\{5,6,7\} \\
A^{\prime}=\{0,1,8\} & A \cup B=\{2,3,4,5,6,7,8\} \\
B=\{5,6,8\} & B^{\prime}=\{0,1,3,3,3\}
\end{array} \quad A \cap B^{\prime}=\{2,3,4\}\right\}
$$

Assignment:
WS: Assignment \#1 part worksheet/part textbook

