

Sequences & Series & Financial Math

Logic

Start by going over the

Calculus Precursor assignment

(After test worksheet)

From now on, the word "slope" and "gradient" mean the same thing m = (y₂-y₁)/(x₂-x₁)
1. Find the equation of the straight line joining each of the following points. Use Point-Slope form (we'll need it for calculus) y-y₁ = m(x-x₁) hint: first find m
(a) (-2, -4) and (1, -7)
(b) Then convert to gradient-intercept form (y = mx + b) a.k.a. slope-intercept form

f

3. New tires have a tread depth of 8 mm. After driving for 32,178 km the tread depth was reduced to 2.3 mm. What was the wearing rate of the tires in km travelled per mm of depth.

(The value you calculated can also be called the average wear rate)

Consider a trip from Adelaide	Place	taken (min)	travelled (km)	
table gives places along the way, distances travelled and time taken	Adelaide tollgate	0	0	
	Tailem Bend	63	98	
	Bordertown	157	237	
We what the distance transflad	Nhill	204	324	
against the time taken to obtain	Horsham	261	431	
a graph of the situation. Even	Ararat	317	527	
though there would be variable	Midland H/W Junction	386	616	
speed between each place we will join points with straight	Melbourne	534	729	
	distance	travelled (km)		
We can find the average speed between	800		м	
any two places.			mo	
For example, the average speed from Bordertown to Nhill is:	(00)	Mł	-IJ	
	600	A		
time taken				
324 - 237 km	400	H		
$=\frac{324-257}{204-157}$ min	400	N		
87 km		- 87 km		
$=\frac{67 \text{ km}}{\frac{47}{10} \text{ h}}$	200	T		
⇒ 111 km/h	TB	47 min		
	A		time	taken
	100	200 300	400 500 600	

We notice that the average speed is the $\frac{y-\text{step}}{x-\text{step}}$ on the graph.

So, the average speed is the gradient of the line segment joining the two points which means that the faster the trip between two places, the greater the gradient of the graph.

If s(t) is the distance travelled function then the average speed over the time interval from $t = t_1$ to $t = t_2$ is given by:

Average speed = $\frac{s(t_2) - s(t_1)}{t_2 - t_1}$

Pick up:

2

Calculus 1.0 Notes

start with #2

The Graph below shows how a cyclist accelerates away from an intersection.

The average speed over the first 8 seconds is

$$\frac{100 \text{ m}}{8 \text{ sec}} = 12.5 \text{ ms}^{-1}.$$
 $\frac{\text{m}}{\text{s}'}$

Notice that the cyclist's early speed is quite small, but it increases as time goes by.

October 27, 2017

(F)	$f(x) = x_{r}$					
	x	Point M	gradient of FM			
	5	(5, 25)	$\frac{25-1}{5-1} = 6$	\rightarrow		
	3		415			
	2					
	1.5					
	1.1					
	1.01					
	1.001					

$$y = (1+h)$$

$$y = (1+h)(1+h)$$

Why do gorillas have such big nostrils?

Because they have such big fingers.

E(1)

Why don't seagulls fly over the bay?

Because then they'd be bagels. What's made of plastic and hangs around French cathedrals?

The lunchpack of Notre Dame.

Assignment:

Calculus packet: p. 565..... 1, 2 p. 568..... 1abe, 3

Next test: Friday, November 3rd

SAVE Mr. C !!!

