(tp://www.teacherlink.org/content/math/interactive/flash/derivativetool/derivative.html

http://www.ima.umn.edu/~arnold/calculus/differential/differential-g.html

Pick up the new HW recording sheet for this

 week.
Calculus

Sequences \& Series \& Financíal 'Math
 Logic

Today we will start a short, 6 day, unit on Calculus.

All Assignments will be from the Differential Calculus packet

There will be a Quiz on this unit on Friday, Nov. 3
and and one or two LCQ's
to check on your learning.
from now on, the words
> "slope" and "gradient" are interchangeable.

Start by going over the Calculus Precursor assignment (After test worksheet)

From now on, the word "slope" and "gradient" mean the same thing $\quad \boldsymbol{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

1. Find the equation of the straight line joining each of the following points. Use Point-Slope form (we'll need it for calculus) $y-y_{1}=m\left(x-x_{1}\right)$ hint: first find m
(a) $(-2,-4)$ and $(1,-7)$
(b) Then convert to gradient-intercept form $(y=m x+b)$ a.k.a. slope-intercept form
2. Find the equation of the straight lines below, given its gradient and the coordinates of a point on the straight line. Point-slope form

$$
-\frac{1}{2}, \quad(5,7)
$$

3. New tires have a tread depth of 8 mm . After driving for $32,178 \mathrm{~km}$ the tread depth was reduced to 2.3 mm . What was the wearing rate of the tires in km travelled per mm of depth.
(The value you calculated can also be called the average wear rate)
4. Before answering this question, first go to question \#4 on the back side. Then come back. Estimate the average speed in graph between 2 and $\mathbf{7}$ seconds and average rate of beetle decrease from dose 4 to 14

Consider a trip from Adelaide to Melbourne. The following table gives places along the way, distances travelled and time taken.

We plot the distance travelled against the time taken to obtain a graph of the situation. Even though there would be variable speed between each place we will join points with straight line segments.

Place	taken (min)	travelled (km)
Adelaide tollgate	0	0
Tailem Bend	63	98
Bordertown	157	237
Nhill	204	324
Horsham	261	431
Ararat	317	527
Midland H/W Junction	386	616
Melbourne	534	729

We can find the average speed between any two places.
For example, the average speed from Bordertown to Nhill is:

$$
\begin{aligned}
& \frac{\text { distance travelled }}{\text { time taken }} \\
= & \frac{324-237 \mathrm{~km}}{204-157 \mathrm{~min}} \\
= & \frac{87 \mathrm{~km}}{\frac{47}{60} \mathrm{~h}} \\
\doteqdot & 111 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

We notice that the average speed is the $\frac{y \text {-step }}{x \text {-step }}$ on the graph.
So, the average speed is the gradient of the line segment joining the two points which means that the faster the trip between two places, the greater the gradient of the graph.
If $s(t)$ is the distance travelled function then the average speed over the time interval from $t=t_{1}$ to $t=t_{2}$ is given by:

$$
\text { Average speed }=\frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{t_{2}-t_{1}}
$$

Calculate the average speed between Nhill and Melbourne. Then go back and answer question \#4.

Pick up:

Calculus 1.0 Notes start with \#2

The Graph below shows how a cyclist accelerates away from an intersection.

The average speed over the first 8 seconds is

$$
\frac{100 \mathrm{~m}}{8 \mathrm{sec}}=12.5 \mathrm{~ms}^{-1} . \quad \frac{\mathrm{m}}{\mathrm{~s}^{\prime}}
$$

Notice that the cyclist's early speed is quite small, but it increases as time goes by.

Estimate the average speed of the cyclist between 3 and 7 seconds

Estimate the average speed of the cyclist between 3 and 7 seconds

$$
\text { Avg speed }=\frac{60-10}{7-3}=\frac{50}{4}=12.5 \overbrace{\text { UNIT }} / \mathrm{sec}
$$

From Geometry: A tangent is a line (or segment) that touches a circle at exactly one point.

The average speed in the interval from 2 to 4 seconds is shown

$$
\begin{aligned}
& =\frac{\text { distance travelled }}{\text { time taken }} \\
& =\frac{(80-20) \mathrm{m}}{(4-2) \mathrm{s}} \\
& =\frac{60}{2} \mathrm{~m} \mathrm{~s}^{-1} \\
& =30 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

But that does not tell us the instantaneous speed at any particular time

The instantaneous rate of change of a variable at a particular instant is given by the gradient of the tangent line to the graph at that point.

Now back to the

Cyclist problem

\bullet

Find the instaneous speed at
$t=4$
seconds

Finding the Gradient Algebraically

Investigation \#3

Given the curve $y=x^{2}$ we will find the gradient of the tangent at the point $\mathbf{F}(1,1)$

for the rest

$$
\begin{aligned}
& y=(1+h)^{2} \\
& y=(1+h)(1+h)^{2} \\
& y=\left(+2 h+h^{2}\right. \\
& y=h^{2}+2 h+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { the algebraic method: } \\
& \text { gradient }=\frac{\Delta y}{\Delta x}=\frac{y-y}{x-x} \\
& =\frac{(1+h)^{2}-1}{(1+h)-1} \\
& =\frac{h^{2}+2 h+1-1}{1+h-1}=\frac{h^{2}+2 h}{h}=\frac{h(h+2)}{h}=h+2 \\
& \text { AS } h \rightarrow 0 \text { gradient }=2 \frac{m}{s}
\end{aligned}
$$

As \mathbf{M} approaches \mathbf{F}, h approaches o
so $2+h$ approaches $\mathbf{2}$
so the gradient of the tangent at $(1,1)$ is 2.

example \&
Use the algebraic method to find the gradient of the tangent to $\mathbf{y}=\mathbf{x}^{2}$ at the point where $\mathbf{x}=3$

$$
\begin{aligned}
& \frac{\Delta y}{\frac{1}{3+h}} \frac{\Delta y}{\Delta x}=\frac{h^{2}+6 h+9-9}{3+h-3}=\frac{h^{2}+6 h}{h} \\
& \operatorname{As} h \rightarrow 0 \quad \frac{\Delta y}{\Delta x} \rightarrow 6
\end{aligned}
$$

example 2

Use the algebraic method to find the gradient of the tangent to $\mathbf{y}=\mathbf{x}^{2}+3 \mathrm{x}$ at the point where $\mathbf{x}=\mathbf{2}$

Hou to Dram CHET GECKO

Feeling arristic? Here's how you draw Emerson Hicky Elementary's fan
Get a pencili, paper, and on erasere (yes, even genius artists use erasers). Put on your fancy arists top (or whatever cap you can find). Then follow these simple instructiors.

SIEP 1

Start with the basic shopes of a dirde head and a bean body.

STEP 2

Ouring this step, you erase some of the bean shape-at the neck, arms, and legs. (I told you thot eraser would come in handy!)

STEP 3

As you add Chet's clothes, you'll erose even more of the origind shapes. But they're still the basis for your drowing. Notice how the brim of the hat comes right down over Chet's eyes. The brim looks almoss like eyebrows. Also notice how his front hand rests in a pocket. This is a great trick when you're still learning how to draw honds-hide them!

Why do gorillas have such big nostrils?

Because they
have such big
fingers.

Why don't seagulls fly over the bay?

Because then
 they'd be
 bagels.

What's made of plastic and hangs around French cathedrals?

This instantaneous rate of change at

specific point on a curve can be calculated

a) visually, by estimating the gradient (slope) of the line that is tangent at that point
b) Using the algebraic method (First principles)
c) Finding the derivative (tomorrow)
d) with your GDC

Find the instaneous rate of change
 at $\mathrm{t}=3$ hours

$$
\begin{aligned}
& f(x)=0.5(2)^{x} \\
& \checkmark \text { Graph (zoom 6) } \\
& \checkmark \text { 2nd Calc } \\
& \int \frac{\mathrm{dy}}{\mathrm{dx}} \\
& \mathfrak{t}=3 \text { seconds }
\end{aligned}
$$

$$
\text { at } t=1 \text { ? }
$$

Assignment:
Calculus packet: p. 565..... 1, 2
p. 568..... 1abe, 3

Next test: Friday, November 3rd
Save Mr.C !!!

