

Graph $f(x)=\frac{2 x-5}{2 x-5}=$ Sketch the graph. - list the location of any points of discontinuity.		
$2 x-5=0$$2 x=5$$\quad$: list the domain of the graph.		
	$\xrightarrow{ }$	$-\infty<x<\infty, x \neq 2.5$
	2.5	

Why cant x be equal to 4 ?

$$
\frac{x+2}{x-4}
$$

$$
\frac{x+2}{0}=\infty
$$

What are the excluded values of x in:

$$
x+\frac{x}{2 x+1}+\frac{2 x^{2}-2}{(x-5)(2 x+1)}
$$

$$
\begin{aligned}
& 2 x+1=0 \\
& 2 x=-1 \\
& x=-\frac{1}{2} \quad x=5
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2|2 x-3|}{2}=\frac{18}{2} \\
& 2 x-3=9 \\
& 2 x-3 \mid=-9
\end{aligned}
$$

Notes on the back of

$$
W_{a r m}-U_{p}
$$

941 bologna sandwich bacteria currently 72 million triples every 24 hours

15 days ago, there was \qquad bacteria function

$$
y=a b^{x}
$$

$$
\text { low as } 100 \text { ? }
$$

$$
\begin{aligned}
96 c] \frac{8}{k} & =\frac{14}{k+3} \\
\overparen{\delta}(k+3) & =14 k
\end{aligned}
$$

90 a

$$
\begin{aligned}
& a \cdot \frac{x-7}{9(2 x-1)} \div \frac{(x+5)(x-7)}{6 x(x+5)} \\
& \frac{x-7}{9(2 x-1)} \odot \frac{6 x}{x-7}
\end{aligned}
$$

90 $\frac{6 x^{2}-x-1}{3 x^{2}+2 x+8} \cdot \frac{x^{2}+4 x-32}{2 x^{2}+7 x-4}$
${ }^{90}$

$$
\begin{aligned}
& \text { b. } \frac{6 x^{2}-x-1}{3 x^{2}+2 x+8} \cdot \frac{x^{2}+4 x-32}{2 x^{2}+7 x-4} \\
& \frac{(2 x-1)(3 x+1)}{\left(3 x^{2}+2 x+8\right.} \odot \frac{(x+8)(x-4)}{(x+4)(2 x-1)} \quad \begin{array}{r}
x-32 x \\
2 x-6 x \\
-4 x+8 x
\end{array}
\end{aligned}
$$

91 a $\frac{(x+4)^{2}}{(x+4)(x-2)}=$

$$
91 b \frac{8(x+2)^{3}(x-3)^{3}}{4(x+2)^{2}(x-3)^{5}}
$$

$$
93 b \quad \begin{aligned}
& 3 x-2 y=30 \\
& 2 x+3 y=-19
\end{aligned}
$$

$$
72=a(3)^{15}
$$

$$
96 a \cdot \frac{m}{6}=\frac{m+1}{5} \quad \text { c. } \frac{3 x-5}{2}=\frac{4 x+1}{4}
$$

\square
from this point on in this
course, you may assume
that all values of x that
would make a denominator
zero are excluded

Learning Target

Add \& Subtract
 Expressions
 a different process than + or -

$$
\frac{2}{13}+\frac{5}{13} \rightarrow \frac{2+5}{13} \rightarrow \frac{7}{13}
$$

$$
\begin{aligned}
\frac{u-v}{8 v}+\frac{6 u-3 v}{8 v} & \rightarrow \frac{u-v+6 u-3 v}{8 v} \\
& \frac{7 u-4 v}{8 v}
\end{aligned}
$$

(1)
$\frac{m-3 n}{6 m^{3} n}-\frac{m+3 n}{6 m^{3} n}$
$\frac{m-3 n-(m+3 n)}{6 m^{3} n} \rightarrow \frac{m-3 n-\not m-3 n}{6 m^{3} n}$

$$
\rightarrow \frac{-6 \cdot 1}{16 \cdot m^{3} \cdot d x}=-\frac{1}{m^{3}}
$$

(2) $\frac{1(5)}{3(5)}+\frac{2(3)}{5(3)}=\frac{5+6}{15}=\frac{11}{15}$

$$
\frac{-5 x^{2}+5 x+24}{4(x-1)}
$$

$$
\begin{aligned}
& \frac{6(4)}{(x-1)(4)}-\frac{5 x(x-1)}{4(x-1)} \rightarrow \frac{24-\left[5 x^{2}-5 x\right]}{4(x-1)} \\
& \frac{\frac{-\left(5 x^{2}-5 x-24\right)}{24-5 x^{2}+5 x}}{4(x-1)} \rightarrow \frac{\frac{-5 x^{2}+5 x+24}{4(x-1)}}{4(x-1)} \\
& \\
&
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \frac{x^{2}-25}{3 x^{2}+15 x}-\frac{3}{2 x} \\
& \frac{(x+3)(x-5)}{3 x(x+5)}-\frac{3}{2 x}-\frac{2(x-5)}{3 x(2)}-\frac{3(3)}{3(2 x)} \\
& \left.\frac{2 x-10-9}{6 x}-\frac{2 x-19}{6 x}\right)
\end{aligned}
$$

(2)

$$
\begin{array}{r}
\frac{6}{1} \frac{(x-4)}{(x-4)}+\frac{2}{x-4} \\
\frac{2(3 x-11)}{x-4}
\end{array}
$$

$$
\frac{x^{2}-25}{3 x^{2}+15 x}-\frac{3}{2 x}
$$

$\frac{2 x}{\frac{2 x+5)}{(x-1)(x+5)}}+\frac{3}{x+5(x-1)}$
$\frac{2 x^{2}+10 x+3 x-3}{(x-1)(x+5)}$
$\frac{2 x^{2}+13 x-3}{(x-1)(x+5)}$
$(x-1)(x+5)$

$$
\begin{array}{ll}
\frac{2}{x+4} & +\frac{4 x-x^{2}}{x^{2}-16} \\
\frac{-x(x-4)}{x+4} & +\frac{x(4-x)}{(x+4)(\sqrt{2})} \\
\frac{2}{x+4}+\frac{-x}{x+4}
\end{array}
$$

$$
\frac{x}{3 x+1}+\frac{2 x^{2}-2}{(x-5)(3 x+1)}
$$

Split Groups

- split groups in half
- A team \& B team
A). $\frac{9-3 x}{(x+3)(x-3)}+\frac{2 x}{x+3}$
B). $\frac{2 x-1}{3 x^{2}+13 x+4}+\frac{x+3}{x^{2}-3 x-28}$

Once each team is complete take turns explaining to the other team you method solving.

$$
\frac{9-3 x}{(x+3)(x-3)}+\frac{2 x}{x+3}
$$

$$
\frac{2 x-1}{3 x^{2}+13 x+4}+\frac{x+3}{x^{2}-3 x-28}
$$

