$$
\begin{array}{ll}
y=x^{2}-9 & 25 n^{2}-1 \\
(x)(3) & (5 n)^{2} \cdots(1)^{2} \\
y=(x+3)(x-3) 3) & (5 n+1)(5 n-1)
\end{array}
$$

Do the Warm Up
front side only
also pick up the ch. 2 test info sheet

Example: $9 x^{2}-4=(3 x+2)(3 x-2)$

1. $4 x^{2}-1=$
2. $x^{2}-9=$
(3.) $36 x^{2}-9=9\left(4 x^{2}-1\right)$ $9(x)$
3. $100 x^{2}-81=$
4. $25 x^{2}-4=$
5. $81 x^{2}-121=$

$\begin{gathered} (x+13)(x-13) \\ \text { THE } \end{gathered}$	$\left\lvert\, \begin{gathered} 16(3 x-1)(3 x-1) \\ \text { SUM } \end{gathered}\right.$	$\begin{gathered} (x-4)(x+4) \\ \text { OFA } \end{gathered}$	$\begin{gathered} (6 x+5)(6 x-5) \\ \text { PRO } \\ \hline \end{gathered}$	$\begin{gathered} (25-4 x)(25+4 x) \\ Q \cup O \\ \hline \end{gathered}$	$\begin{gathered} (x+1)(x-1) \\ \text { DUC } \end{gathered}$	
$\begin{gathered} (9+x)(9-x) \\ \text { TOF } \end{gathered}$	$\begin{gathered} 9(2 x-1)(2 x+1) \\ \text { TIE } \end{gathered}$	$(x+7)(x-7)$ THE	$\begin{gathered} (2 x+1)(2 x-1) \\ \text { NIA } \end{gathered}$	$\begin{gathered} (9 x+1)(9 x-1) \\ \text { SUM } \\ \hline \end{gathered}$	$\begin{gathered} (x+2)(x-2) \\ \text { AND } \end{gathered}$	
$\begin{gathered} (10-x)(10+x) \\ \text { WAS } \\ \hline \end{gathered}$	$\begin{gathered} (5 x+3)(5 x-3) \\ \text { DIF } \end{gathered}$	$\begin{gathered} (x-5)(x+5) \\ \text { HAS } \end{gathered}$	$\begin{gathered} (8 x+1)(8 x-1) \\ \text { FER } \end{gathered}$	$\begin{gathered} (11 x-7)(11 x+7) \\ \text { MAN } \end{gathered}$	$\begin{gathered} (x-6)(x+6) \\ \text { NER } \end{gathered}$	
$\begin{gathered} (x+18)(x-18) \\ \text { ENC } \\ \hline \end{gathered}$	$\begin{gathered} (10 x-9)(10 x+9) \\ \text { THA } \end{gathered}$	$\begin{gathered} (x-3)(x+3) \\ T \\| S \end{gathered}$	$(5 x-2)(5 x+2)$ MYP	$\begin{gathered} (7 x+11)(7 x-11) \\ \text { EOF } \\ \hline \end{gathered}$	$\begin{gathered} (x+8)(x-8) \\ \text { THE } \\ \hline \end{gathered}$	
$\begin{gathered} (x+15)(x-15) \\ \text { SQU } \end{gathered}$	$\left\{\begin{array}{c} (9 x-11)(9 x+11) \\ \text { ROB } \end{array}\right.$	$(x+9)(x-9)$ ARE	$\begin{gathered} (3 x+2)(3 x-2) \\ \text { ROO } \end{gathered}$	$(7 x-4)(7 x+4)$ LEM	$(x+9)(x-9)$ TS.	

15. The factored form of the difference of the two squares is
16. $x^{2}-16=$
17. $144 x^{2}-16=$
18. $x^{2}-25=$
19. $625-16 x^{2}=$
20. $100-x^{2}=$
21. $x^{2}-36=$
22. $121 x^{2}-49=(11 x+)^{2}$
$(11 x)^{2}-(7)^{2}$

Consolidate understanding of parent graphs and
the details of their
transformations.
Aim
d learn Characteristics of each parent function

Class Brainstorm

List of all of the families of functions that you have learned about so far in your study of Algebra

brainstorm

 parabolas exponential cubicabsolute value
square root
linear
hyperbola(recirocal)

lines parabolas hyperbolas cubics square root exponential absolute value

Function Familiarity

2. $y=\frac{1}{x+2}$
$y=x^{2}-5$
b.

$$
y=\frac{1}{(x)}
$$

$y=x^{2}$
$y=(x-3)^{3}$
c.

d. $\begin{gathered} y=(5-3)^{x} \\ y=b^{x} z^{x} \end{gathered}$	e. $\quad y_{y}=3 \times 1$ $y=-3 x-6$	

$y=(x+3)^{2}-6$

$y=-(x-3)^{2}+6$
h.

$y=(x+3)^{3}-$
i.

let's go back and look at the

 Significance of (h,k)$y=-(x-3)^{2}+6$

Parabola

$y=a(x-h)^{2}+k$
The locator point (h, k) is at the vertex of a parabola
$(h, k) \quad(-2,3)$ infection

$$
y=(x+2)^{\frac{3}{3}}
$$

f.

Cubic

$y=x^{3}$

$$
y=a(x-h)^{3}+k
$$

The locator point (h, k) is at the inflection point.
$(-2,0)$ is the locator a. $y=\frac{1}{x+2}$ point

$$
y=\frac{1}{x}
$$

Hyperbola

$y=\frac{1}{x}$
$y=\frac{a}{x-h}+k$
The locator point (h, k) is in between the two branches.

$$
\begin{gathered}
(0,-2) \text { new y-int• } \\
y=2^{x}-3 \\
\text { d. } \\
y=2^{x} \\
y=a \cdot 2^{x}+k
\end{gathered}
$$

The locator point (h, k)
is ?????

$$
\begin{aligned}
& y=|x| \\
& y=a|x-h|+k
\end{aligned}
$$

Two Tough Problems

(1) Complete the square to convert $y=3 x^{2}+2 x+10$ to graphing

$$
\frac{y}{3}=
$$

(2) Solve the equation

$$
2\left(1-\frac{x}{3}\right)=\frac{x}{7}+3
$$

(2) Solve the equation

$$
2\left(1-\frac{x}{3}\right)=\frac{x}{7}+3
$$

2-107-109, 110a, 111, 113, 119
 The Chapler 2 lest is Friday

