Turn introductions into the Orange Folder.

Homework Check

- I will be passing out the solutions.
- Have your HW and a pen out.
- Because of the project Intro, if your HW is not done, the wait to check with the solutions tomorrow (no penalty).

Schedule:
 Mon Tree Diagrams to help with Probability

Tues Prob Laws

Wed Review

Thur Test on Sets, Venn Diag, Probability and a bit of Geometry/Trig

can make some situations of chance much easier

Driving to Work

A driver gets stopped by a traffic light 60% of the time.

At the second light they get stopped 70% of the time.

On a typical day, what is the probability they get stopped by only one of the lights?

What is the probability they get stopped by only one of the lights ?

Probabilities are marked
on the branches

There are 4
different possible paths

[^0]obtained

hand out

Tree Diagrams allow us to answer a variety of easy, and not so easy questions.

There are $\underline{4}$ different possible paths.
probabilities are marked on the branches.
Compound Probabilities are obtained by multiplying
Probabilities of each branch always add to \qquad

Li's results	H ana's results	outcome

a) $P($ both hit a bulls eye $)=\frac{12}{20}$
b) $P($ at least one bulls eye is hit $)=\frac{3}{4} \cdot \frac{4}{5}+\frac{3}{4} \cdot \frac{1}{4}+\frac{1}{4} \cdot \frac{4}{5}=\frac{19}{20}$
c) $\mathrm{P}($ exactly one hits the bulls eye $)=\frac{3}{4} \cdot \frac{1}{5}+\frac{1}{4} \cdot \frac{4}{5}=\frac{7}{20}$

Jason takes the car to school two days a week and the other days he rides his bike. If he has the car the chance that he is late is 10% but if he rides it is 30%.

a Copy and complete the tree diagram.
b What is the probability that on a randomly selected day Jason was: i P (riding and not late)
$=(6)(.7)$

> ii late?

$$
=42
$$

$$
P\left(\begin{array}{l}
\text { late } b_{y} \\
\text { lar }
\end{array}\right.
$$

$$
\left.\begin{array}{l}
\text { late } \\
\text { by riding }
\end{array}\right)
$$

$$
=(4)(.1)+(.6)(.3)
$$

$$
=.04+.18=.22
$$

i riding and not late
ii late
late or late by
by cor bike

Sampling

With and Without Replacement

Use a tree diagram to help answer the following:

Two marbles are drawn in succession from a box containing 2 purple and 5 green marbles. Determine the probability that the two marbles are different colours if:
a the first is replaced

a)

$$
\begin{aligned}
& =\frac{2}{7} \cdot \frac{5}{7}+\frac{5}{7} \cdot \frac{2}{7} \\
& =\frac{10}{49}+\frac{10}{49} \\
& =\frac{20}{49}
\end{aligned}
$$

2. Use a tree diagram to help answer the following:

Two marbles are drawn in succession from a box containing 2 purple and 5 green marbles. Determine the probability that the two marbles are different colours if:
a the first is replaced
b the first is not replaced.

Caution

If the two marbles were drawn simultaneously, you would treat that as if they were drawn one after another.

Problems that are not a good match for a tree diagram

In a class of 40 students, 19 play tennis, 20 play netball and 8 play neither of these sports. A student is randomly chosen from the class. Determine the probability that the student:
a plays tennis $19 / 40$
b does not play netball $-\frac{20}{40}$
c plays at least one of the sports 32 d
e plays netball, but not tennis 1349
plays one and only one of the sports=
$\frac{25}{40}$

plays tennis knowing he/she plays netball $\frac{7}{20}$

$$
\begin{gathered}
O=O+O-0 \\
32=19+20-x \\
x=7
\end{gathered}
$$

(5) Which bet would you make?

Conslder the following problemand decide which of thle suggested bets you would be happlest to put your money on.

- A bag contains 10 counters, 3 red, 2 blue and 5 green ones
- A counter is drawn from the bag and then put back, then another counter is drawn from the bag? For an even bet (le, you dótble your money if you win) would you bet on...

1. Getting 2 greens
2. Getting at least 1 réd
3. Getting two the same colour
4. Getting two different colouis

Assignment \#6 from HH textbook:
p.468....3h
p.471.... 4
p.474... 3, 7
p.478... 2

Appropriate
p.482....3, 4, 8 diagrams and work expected

[^0]: Probabilities are

