Warm Up
Convert each term of the function below to the form $a x^{n}$ where $n \in Z$

$$
f(x)=\frac{10}{x^{1}}+\frac{5}{x^{2}}=
$$

$$
g(x)=\frac{3 x^{2}-6 x+x^{3}}{x^{3}}=
$$

$$
=3 x^{-1}
$$

$$
g(x)=\frac{3 x^{2}-6 x+x^{3}}{x^{3}}=
$$

Questions on HW

$$
\begin{aligned}
& \text { (1a) } y=x^{2} \\
& m=\frac{(3+h)^{2}-9}{3+h-3} \\
&=\frac{6+6 h+h^{2}-9}{h} \\
&=\frac{6 h+h^{2}}{h}=\frac{k h(6+h)}{k}=6+h
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1a) } y=x^{2} \times\left(3+h,(3+h)^{2}\right) \\
& m=\frac{(3+h)^{2}-9}{3+h-3} \\
&=\frac{9+6 h+h^{2}-9}{h}=\frac{6,9)}{3+h} \\
&=\frac{6 h+h^{2}}{h}=\frac{k h(6+h)}{k r}=6+h
\end{aligned}
$$

(1e) $y=2 x-x^{2}$ at $x=3$

$$
(3+h,)
$$

(1e) $y=\underset{\substack{2 x-x^{2} \\ 3 \text { th } \\ \pi \\ \text { th }}}{\substack{2}}$ at $x=3$

$$
\begin{aligned}
& 2(3+h)-(3+h)^{2} \\
& 6+2 h-(3+h)(3+h) \\
& 6+2 h-\left[9+6 h+h^{2}\right] \\
& =6+2 h-9-6 h-h^{2} \\
& =-3-4 h-h^{2}
\end{aligned}
$$

$$
-3-4 h-h^{2}
$$

(1e) $y=2 x-x^{2}$ at $x=3$
Gradient =
(3,-3):cheches,

$$
\begin{aligned}
& \frac{-3-4 h-h^{2}--3}{3+h-3} \\
&==\frac{k(-4-h)}{\frac{-4 h-h^{2}}{h}} \\
&=-4-h
\end{aligned}
$$

$$
-3-4 h-h^{2}
$$

 of curves at a specific point
(a)drawing a tangent and estimating
(b) Algebraically
(c) with GDC
K. Basic Differential Calculus

Calculate the derivative at a specific point.

1. Graph the function, $f(x)$, and obtain an appropriate window.
2. Select Ind then TRACE, the select $\frac{d y}{d x}$,
3. enter the appropriate x-value, then ENTER

Draw Tangent Line (\& calculate it's equation)

1. Graph the function, $f(x)$, and obtain an appropriate window.
2. Select and then DRAW, then TANGENT,
3. enter the appropriate x-value, then ENTER

Find the instaneous rate of change at $\mathrm{t}=3$ hours

$$
f(x)=0.5(2)^{x}
$$

\checkmark Graph (zoom 6)
\checkmark 2 nd Talc
$\checkmark \frac{\mathrm{dy}}{\mathrm{dx}}$
$\mathrm{t}=3$ seconds
at $t=1$?

TODAY'S AIM

Find derivatives directly
for functions in the form

$$
\begin{aligned}
& f(x)=a x^{n} \\
& \text { or } \\
& f(x)=a x^{n}+b x^{n-1} \ldots
\end{aligned}
$$

Pick Up

$$
\text { Notes } 2.0
$$

What we are about to look at will require you to focus on on the gradients of all of the tangents of a function

(A) Wouldn't it be cool if there was a magic function that could quickly give you the gradients at any x-value you want, for any function

That function is called The Gradient fowerion
or more commonly called THE Derivative function

Gradient is a rate of change

The Derivative is a function that that you can use to generate the gradient at any x-value.
other symbols for it:

$$
f^{\prime}(x) \text { or } \frac{d y}{d x}
$$

(c) The gradient function (a.k.a derivative function) is created from the original function, $f(x)$.

An example: $f(x)=x^{2}$
its derivative, $f^{\prime \prime}(x)$, is

Differentiation is the process of finding the derivative of a function

Before we look at

- some patterns, lets
find the gradient one more time with our GDC
(D) Find the instaneous rate of change at $\mathrm{x}=1$ second

First estimate visually

$$
f(x)=2 \sqrt{x}
$$

\checkmark Graph (zoom 6)
\checkmark and Talc $\frac{d y}{d x}$
/ $\mathrm{x}=1$ (for example)
enter
it turns out the derivative function is

$$
\begin{gathered}
f^{\prime}(x)=\frac{1}{\sqrt{x}} \\
f^{\prime}(1)=\frac{1}{\sqrt{3}}=\frac{1}{1}=1
\end{gathered}
$$

E See if you can see a connection between these two graphs?

Simple Patterns of

for functions in the form $y=a x^{n}$ where $n \in L_{\uparrow}$ integers

(5) ${ }^{\text {tp://www.khanacademy.org/math/calculus/differential-calculus/e/derivative_intuition }}$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x}) \\
& f^{\prime}(x) \\
& 7 x^{2} \quad 7 \cdot 2 x=14 x \\
& -5 x^{3} \\
& -5 \cdot 3 x^{2}=-15 x^{2} \\
& 4 x^{10} \\
& 40 x^{9} \\
& \text { If } y=x^{n} \text { then } \frac{d y}{d x}=n x^{n-1} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
f(x)= & a x^{n} \\
f^{\prime}(x)= & a \cdot x^{n-1} \\
& a n x^{n-1}
\end{aligned}
$$

$f(x)$	$f^{\prime}(x)$
$x^{4}+2 x^{2}$	$4 x^{3}+4 x$
$x^{5}-3 x^{2}$	$x^{4}-6$
$\frac{2}{x^{\prime}} \rightarrow 2 x^{-1}$	$f^{\prime}(x)=2(-1) x^{-2}=-2 x^{-2}$
$\frac{3}{x^{2}} \rightarrow 3 x^{-2}$	or $\frac{-2}{x^{2}}$ $f^{\prime}(x)=3(-2) x^{-3}=-6 x^{-3}$ or $\frac{6}{x^{3}}$

Derivative of simple functions $f(x)$ $f^{\prime \prime}(x)$ $x^{\prime} \quad f^{\prime}(x)=1 \cdot x^{0}=1$ $9 x^{\prime}$ $f^{\prime}(x)=1.9 x^{\circ}=9$ $13 \rightarrow 13 x^{\circ} \quad f^{\prime \prime}(x)=13(0) x^{-1}=0$ $-50 \rightarrow-50 x^{\circ} \quad f^{\prime}(x)=0$

Function	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$
a constant	a	0
x^{n}	x^{n}	$n x^{n-1}$
a constant multiple of x^{n}	$a x^{n}$	$a n x^{n-1}$
multiple terms	$u(x)+v(x)$	$u^{\prime}(x)+v^{\prime}(x)$

Classwork

$$
\text { p. 571 } 1-4
$$

work as a group

EXERCISE ROC
1 Find the gradient function $\frac{d y}{d x}$ for:
a $y=x^{6}$
b $y=\frac{1}{x^{5}}$
c $y=x^{9}$
d $y=\frac{1}{x^{7}}$
$\frac{d y}{d x}=6 x^{5}$

$$
=x^{-5}
$$

$$
=x^{-7}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =-5 x^{-6} \\
& =-\frac{5}{x^{6}}
\end{aligned}
$$

$$
\frac{d y}{d x}=9 x^{8}
$$

$$
\frac{d y}{d x}=-7 x^{-8}
$$

$$
-\frac{7}{x^{8}}
$$

2 For $f(x)=x^{5}$, find:
a $f(2)$
b $f^{\prime}(2)$
c $f(-1)$
d $f^{\prime}(-1)$
$f(2)=$
$=(-1)^{5}$
$=(2)^{5}$
$\therefore f^{\prime}(2)=5(2)^{4}$

$$
=32
$$

3 Consider $f(x)=\frac{1}{x^{4}}$.
a Find $f^{\prime}(x)$.
b Find and interpret $f^{\prime}(1)$.

$$
f(x)=x^{-4} \quad f^{\prime}(1)=-\frac{4}{(1)^{5}}=-4
$$

$$
f^{\prime}(x)=-4 x^{-5}
$$

-4 is the gradient of

$$
=\frac{-4}{x^{5}}
$$ the tangent at $x=1$

4 The graph of $f(x)=x^{3}$ is shown alongside, and its tangent at the point $(-1,-1)$.
a Use the graph to find the gradient of the tangent. $\frac{3}{1}=3$
b Check your answer by finding $f^{\prime}(-1)$.

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2} \\
& f^{\prime}(1)=3(-1)^{2}=3
\end{aligned}
$$

Brain Break

Find $f^{\prime}(x)$ for............

$$
\begin{aligned}
& f(x)=5 x^{3}+6 x^{2}-3 x+2 \\
& f^{\prime}(x)=5\left(3 x^{2}\right)+6(2 x)-3(1)+0 \\
& f^{\prime}(x)=15 x^{2}+12 x-3
\end{aligned}
$$

Papa Bear

$$
\begin{aligned}
& f(x)=7 x-\frac{4}{x}+\frac{3}{x^{3}} \\
& \quad=7 x-4 x^{-1}+3 x^{-3}
\end{aligned}
$$

$$
f^{\prime}(x)=7(1)-4\left(-1 x^{-2}\right)+3\left(-3 x^{-4}\right)
$$

$$
f^{\prime}(x)=7+4 x^{-2}-9 x^{-4}
$$

Or $f^{\prime}(x)=7+\frac{4}{x^{2}}-\frac{9}{x^{4}}$

$$
\begin{aligned}
f(x)=\frac{x^{2}+4 x-5}{x} \quad f(x) & =\frac{x^{2}}{x}+\frac{4 x}{x}-\frac{5}{x} \\
f(x) & =x+4-5 x^{-1} \\
f^{\prime}(x) & =1+0+5 x^{-2} \\
f^{\prime}(x) & =1+\frac{5}{x^{2}}
\end{aligned}
$$

Assignment
p. 5^{13} Calculus packet

1aceghj, 2, Lace, 7, 8
$\# 1$

