Today:
a) a last look at X^{2}
b) LCQ on Correlation

Have your Pink X^{2}
packet available
-
check

$$
H W \longrightarrow \begin{aligned}
& \text { along } \\
& \text { with me ct }
\end{aligned}
$$

Pick up the Warm Up
You'll need your Pink Chi-Square packet from yesterday as a reference
do \#1 and \#2 only for now

Warm Up
 Use your notes as needed.
 ($5-1$)

Practicing Using the Chi-Square Test of Independence

1. A researcher consulted 500 men and women to see if the colour of the car they drove was independent of gender. The colours were red, green, blue, black, and silver. A χ^{2} test was conducted at the 5% significance level and the value found as 8.73. $<X_{\text {calcı }}^{2}$
a. Write down the null hypothesis

Color is independent of gender

b. Find the number of degrees of freedom.
c. Write down the critical value for this test.

d. Is car colour independent of gender? Give a clear reason for your answer.

Yes

2.

Anise a similar test was conducted on a different population of 300 people. A
5% s) gnificance level is used. It was found that the p-value was 0.04
Is colour independent of gender?

$$
p=.04
$$

Since the p-value < 0.05 , we must reject H_{0}. Thus gender and car color preference are associated.

The limitations of the x^{2} test of Independence
A. Not enough data
B. 2×2 adjustment
3.

Consider the contingency table alongside:
a Construct the expected frequency table.
b Are any of the expected frequencies less than 5 ?
c Combine the data so that none of the cells have an expected frequency less than 5 .

$0-19$	4	3
$20-29$		
$30-49$		
$50+$		

Own a pet?				
Yes				No
Age$0-19$ 5 3 $20-29$ 2 22 $30-49$ 42 58 $50+$ 39 34				

Age 0

$$
\begin{array}{c|ccc}
\hline 0-29 & 37 & 25 \\
30-49 & 42 & 48 \\
50+ & 39 & 34
\end{array}
$$

In a 2 by 2 contingency table:
-- Yate's continuity correction must be used when calculating X^{2}

If $\mathrm{df}=1$, we use

$$
\chi_{c a l c}^{2}=\sum \frac{\left(\left|f_{o}-f_{e}\right|-0.5\right)^{2}}{f_{e}}
$$

where $\left|f_{o}-f_{e}\right|$ is the absolute value or modulus of $f_{o}-f_{e}$

The following table shows the results from a random sample carried out so that the question about the relationship between education and job satisfaction could be analysed.

Completed University

	YES	NO	
Satisfied in job	YES	272	618
	NO	238	292
	530		
		910	910

1. Calcuate the expected freq 2. Set up a table to organize.

- Tipping Point
- Blink

TIMES
international math study
Malcolm
Gladwell

- Every 4 years
- Comprehensive test science/math
- Compare educational achievement
- Before Test - Questionnaire

Brainstorm:
Think back to all of the statistical graphs, statistics, measurements so far in this course:

Correlation btw amount spent vs length of stat
Relationship bun occupation and amt spent geneter and occupation What gender would spend more．$\frac{\bar{x}}{\bar{y}}$ m トワー F

Coffee Shop Brainstorm In your group：

Now that you have some statistical tools，What type of questions could be investigated and answered？

Ideas

Ideas
relationship between age t time spent relation between coje/spent

$$
\begin{aligned}
& \text { relation / occupation } \\
& \text { Histoor } \$ 777 \rightarrow 7
\end{aligned}
$$

Relation between \$spent vs time Stemkear - Extent of gee Aug of Age in confine

Project Scoring Guide

- a student friendly version
-the acutal one is posted on the class blog if / when you want to look at it.

Definitely get a folder to house all project materials and keep separate from the regular course materials.

LCQ on Correlation
You can use

Assignment

Ch. 11 Packet
p.341....\#2 (use the x^{2} statistic) p.344.... \#1abcd
p.348.....\#4 (use probability)

$$
\begin{aligned}
& \text { Clearly show all } \\
& \text { Steps }
\end{aligned}
$$

veterinarian has gathered the following data about the weight of dogs and the weight of spies.

	Dog		Total	
	Heavy	Light		
	Heavy	36	27	63
	22	35	57	

The veterinarian wishes to test the following hypotheses.
H_{0} : A puppy's weight is independent of its parent's weight.
H_{1} : A puppy's weight is related to the weight of its parent.
(a) The table below sets out the elements required to calculate the χ^{2} value for this data.
(a) The table below sets out the elements required to calculate the χ^{2} value for this data.

$a=29.45 \quad b=0.5 .55 \quad c=30.8025$
(ii) What is the value of χ^{2} for this data?
$x^{2} \div 4,12$ by adding up values in last
(iii) How many degrees of freedom exist for the contingency table?

$$
\begin{equation*}
d f=(2-1)(2-1)=1 \tag{1}
\end{equation*}
$$

(iv) Write down the critical value of χ^{2} for the 5% significance level.

$$
\begin{equation*}
3.841 \tag{1}
\end{equation*}
$$

(b) Should H_{0} be accepted? Explain why.
4) Let $x=7.94$.
(a) Calculate the value of $\frac{2 x+1}{x^{3}}$.
(b) (i) Give your answer correct to three decimal places. 0.03372 m
(ii) Write your answer to (b)(i) as a percentage. $3,4^{\circ} 0$
(c) Give your answer to part (b)(i) in the form $a \times 10^{k}$, where $1 \leq a<10, k \in \mathbb{Z}$.

The figure below shows the graphs of the functions $f(x)=2^{x}+0.5$ and $g(x)=4-x^{2}$ for values of x between -3 and 3 .

(a) Write down the coordinates of the points A and B .
(b) Write down the set of values of x for which $f(x)<g(x)$.

At what locations are the y-values for $f(x)$ less than the y-values for $g(x)$

$$
\text { Answer: }-1.79<x<1.14
$$

A small Pennsylvania town.

The rest of the day today we will devote to learning what is involved in the course project.

- Get an overview (only)
- Hear about some past projects
- Start brainstorming for yourself.

