HW Questions

a) a last look at X²

b) LCQ on Correlation

Have your Pink X² packet available

Pick up the Warm Up

You'll need your Pink Chi-Square packet from yesterday as a reference

do #1 and #2 only for now

(-5=-+) Use your notes as needed. Warm Up ved | green | Hue | bl alk | Silv Practicing Using the Chi-Square Test of Independence 2-1 1. A researcher consulted 500 men and women to see if the colour of the car they drove was independent of gender. The colours were red, green, blue, black, and silver. A χ^2 test was conducted at the 5% significance level and the value found a. Write down the null hypothesis Color is independent of gender b. Find the number of degrees of freedom. (2-i)(5-i) = 4c. Write down the critical value for this test. d. Is car colour independent of gender? Give a clear reason for your answer. X2 of 8.73 < 9.488

Him day For today The limitations of the X2 Test of Independence A. Not enough data B. 2×2 adguestment

In a 2 by 2 contingency table: -- Yate's continuity correction must be used when calculating X²

If df = 1, we use $\chi^2_{calc} = \sum \frac{(|f_o - f_e| - 0.5)^2}{f_e}$ where $|f_o - f_e|$ is the absolute value or modulus of $f_o - f_e$ The following table shows the results from a random sample carried out so that the question about the relationship between education and job satisfaction could be analysed. Completed University

		YES	NO	
Catiofied in tak	YES	272	618	890
Satisfied in job	NO	238	292	530
		510	910	1420

Calcuate the expected freq
 Set up a table to organize.

. Every 4 years · Comprehensive test science/math Compare educational achievement • · Before Test - Questionnaire 120 questions rers Ed Incomp Dareht

October 03, 2017

Correlation by amount spart vs length effort Relationship by a occuptation and ant spart "" gender and occupation What gender would spend more. I HTT-1 M F

f

Ideas relationship between age of time spent relations, between age opent HISTOGE OCCUPATION AT Relation between \$spent vs time Stem/ear - Extent of see App of Age in Coffoe

relationship botwn occupation VS length of stay

Project Scoring Guide

- a student friendly version

-the acutal one is posted on the class blog if / when you want to look at it.

Definitely get a folder to house all project materials and keep separate from the regular course materials.

LCQ on Correlation

You can use

clearly show all , steps

Assignment

Ch.11 Packet

p.341....#2 (use the x[⁺]statistic) **∢....** p.344.... #1abcd

p.348.....#4 (use probability) -

		Do		Total	
		Heavy	Light	id a solution, you si	
	Heavy	36	27	63	
Puppy	Light	22	35	57	
	Total	58	62	120	
H ₁ : A puppy's	weight is rel	lependent of its ated to the weig	ght of its parer	nt. calculate the χ^2 va	lue for this data
(a) The tabl		out the creater	to required to	A III	nuo ioi inio dutu.

main	fo	fe	$f_{\rm e}-f_{\rm o}$	$(f_e - f_o)^2$	$(f_{\rm e} - f_{\rm o})^2 / f_{\rm e}$	
neavy/heavy	36	30.45	-5.55	30.8025	1.012	
eavy /light	27	32.55	5.55	30.8025	0.946	
ight/heavy	22	27.55	5.55	30.8025	1.118	
ight/light	35	a	Ь	- C c	d	γ
a= (ii) w	29.4 That is t	the value of	of χ^2_{cale} for t	c = 30 his data? 12 by c	dding up values i	(4) (1)
(ii) W	29.4 That is t	15 b the value of ny degrees	= 5.55 of χ^{2}_{cole} for t (2 ± 4)	c = 30 his data? 12 by a exist for the co	18025 d= 1.0	
a= (ii) w (iii) Ha	29.4 That is to ow man	he value of the va	= 5.55 of χ^{2}_{cyle} for t $(2 \stackrel{?}{=} 4)$ s of freedom (2 - 1)	c = 30 his data? 12 by a exist for the co	dding up values i	n last ()
(ii) W (iii) H	29.4 That is to ow man	he value of the va	= 5.55 of χ^{2}_{cyle} for t $(2 \stackrel{?}{=} 4)$ s of freedom (2 - 1)	c = 30 his data? 12 by a exist for the co	dding vp values i olumn ntingency table?	n last ()
$a = \frac{1}{(ii)} $ (iii) Ho (iii) Ho (iv) W (iv) W	29.4 (hat is t ow man 2f = (rite do Ho be a	he value of the va	= 5.55 of x_{cle}^2 for t (2 = 4) s of freedom 1)(2-1) itical value of Explain why	c = 30 his data? .12 by c exist for the co = 1 of χ^2 for the 59 3.34	dding vp values i olumn ntingency table?	n last (1)

~	
4 Let	t <i>x</i> = 7.94.
(a)	Calculate the value of $\frac{2x+1}{x^3}$.
(b)	(i) Give your answer correct to three decimal places. 0.03372
	(ii) Write your answer to (b)(i) as a percentage. $3, 4^{6/6}$
(c)	Give your answer to part (b)(i) in the form $a \times 10^{4}$, where $1 \le a < 10, k \in \mathbb{Z}$. 3.4×10^{-2}
. 2.	4 this means occupation a.K.a "STANDARD FORM"

f

October 03, 2017

YA $f(\mathbf{x})$ 6-B 3 3 x -3 g(x)3 5. (-1.79,0.789) B(1.14,2.70) A Write down the coordinates of the points A and B. (a) Write down the set of values of x for which f(x) < g(x). (b) At what locations dire the y-values for f(x) less than the y-values for g(x) ANSWER : ,79

The rest of the day <u>today</u> we will devote to learning what is involved in the course project.

- Get an overview (only)
- Hear about some past projects
- Start brainstorming for yourself.

