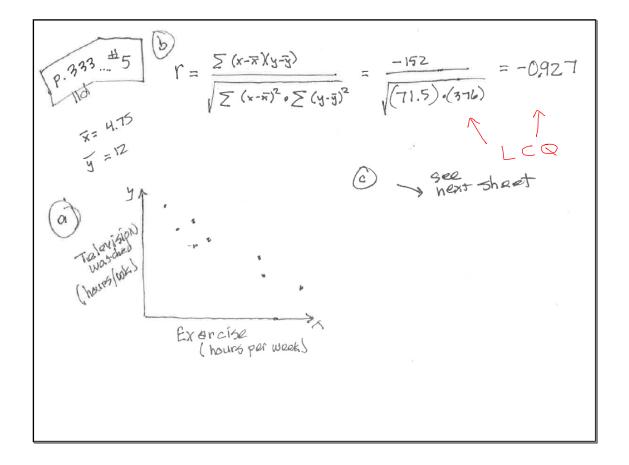
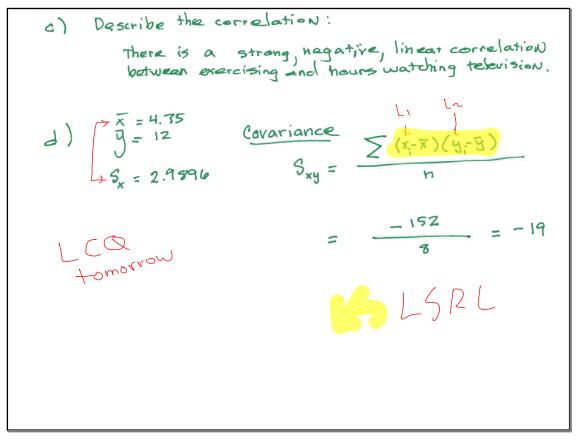


<u>HWCheck</u>

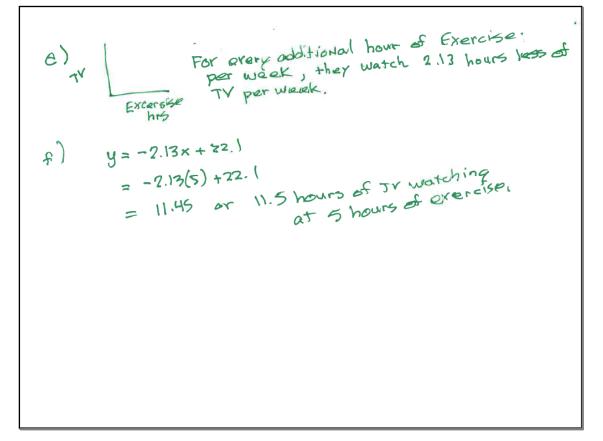
Pick up the solutions. Do a quick check. Have them back up front in 5 minutes ! Ask questions as needed. LCQ tomorrow on these items.

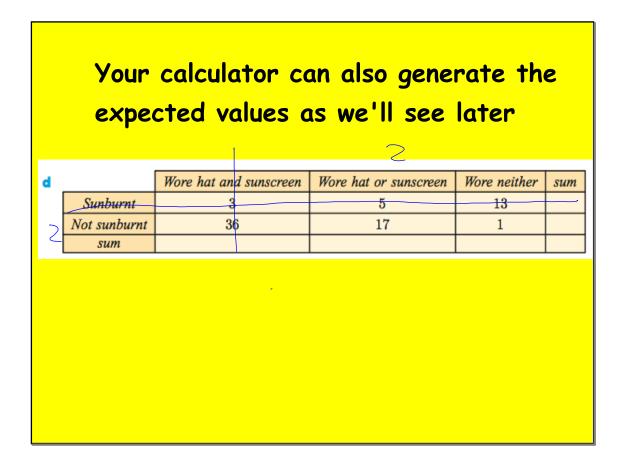

a		Likes chicken	Dislikes chicken	sum	
	Likes fish			60	
	Dislikes fish			40	
	sum	75	25	100	
ERCI	SE 11E.1				
ERCI a	SE 11E.1	Likes chi			sum
	SE 11E.1		cken Dislikes		<i>sum</i> 60
		45		5	


	Drove to w	vork	Cycled	to work	Pı	ublic transport	sum
Male							44
Female							36
sum	46			14		20	80
ь			rove work	Cycled to work		Public transport	sum
	Male		5.3	7.7		11	44
	Female	2	0.7	6.3		9	36
			46	14		20	80

c		Junior school	Middle school	High school	sum
	Plays sport	35	59	71	165
	Does not play sport	23	27	35	85
	sum	58	86	106	250

c		Junior school	Middle school	High school	sum
	Plays sport	38.28	56.76	69.96	165
	Does not play sport	19.72	29.24	36.04	85
	sum	58	86	106	250


		Wore hat a	nd sunscreen	Wor	e hat or sunscreed	n Wore ne	either	sum
Sunbı	ırnt		3		5	13		
Not sun	burnt		6 17			1		
sun	sum							
d			Wore hat a sunscree		Wore hat or sunscreen	Wore neither	sum	
	Su	nburnt	10.92		6.16	3.92	21	
	Not	sunburnt	28.08		15.84	10.08	54	
		sum	39		22	14	75	



Equation of
LSRL

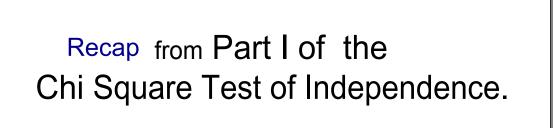
$$y - y, = \frac{S_{xy}}{(S_x)^2}(x - x_1)$$
 using the mean point
 $y - 12 = \frac{-19}{(2.9996)^2}(x - 4.75)$
 $y - 12 = -2.13(x - 4.75)$ can convert formation y^{2} and y^{2} .
 $y = -12 = -2.13(x - 4.75)$ $y = -2.13(x - 4.75)$

Schedule

Monday --- The full Chi-Square Test of Indep. Process

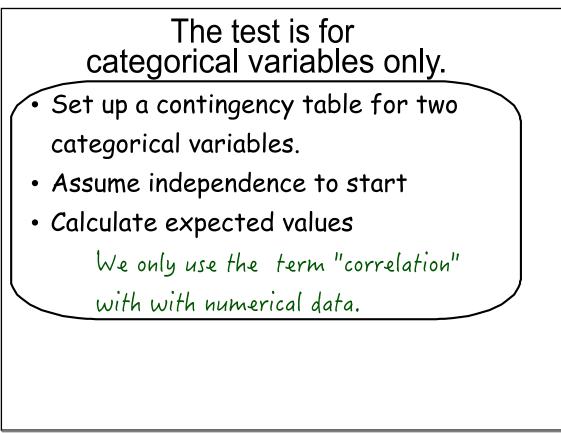
<u>Tuesday</u>- Special Situations + Evaluate other Criteria for project, **LCO**

Wednesday- Get a list of Unit 2 Test items, continued practice,

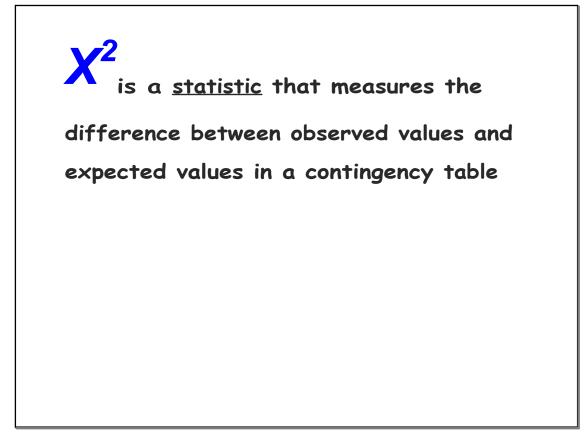

Packet P3 (Info on selecting a project and Ideas for project)

<u>Thursday</u> - Evaluate a past project (using the scoring guide) + Use

Computer spreadsheet to calculate Yand LSRL


<u>Friday</u> - Review Questions + Start Numerical Trigonometry

Monday - Test on Unit 2 (Statistical Applications)

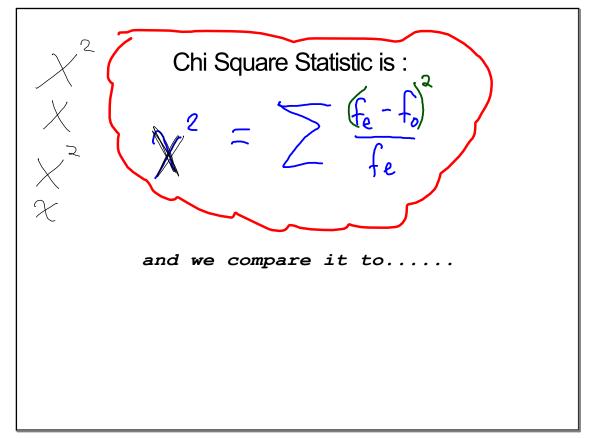


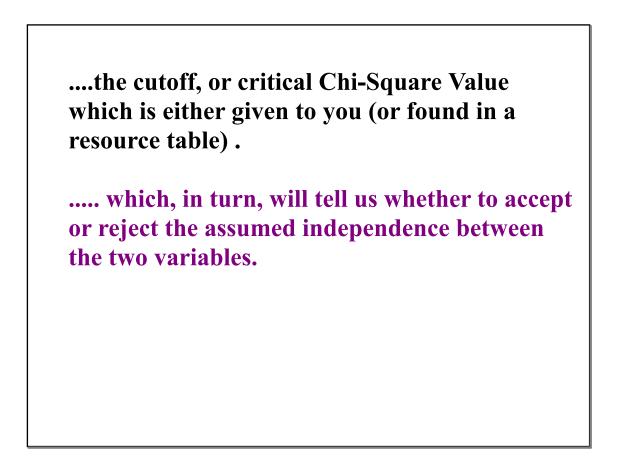
If you were not here last class, hopefully you already checked the blog!

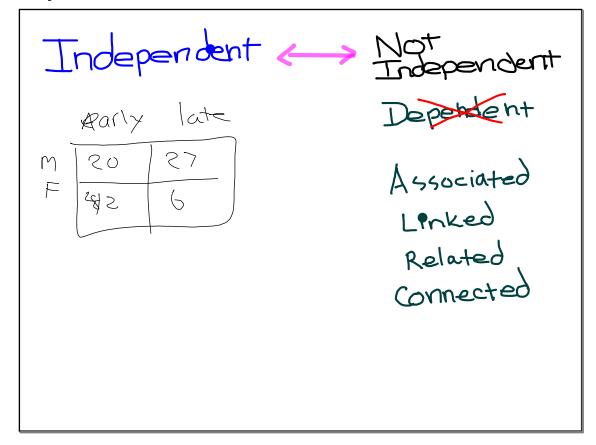
Pick UP the Class Notes read the first 4 slides

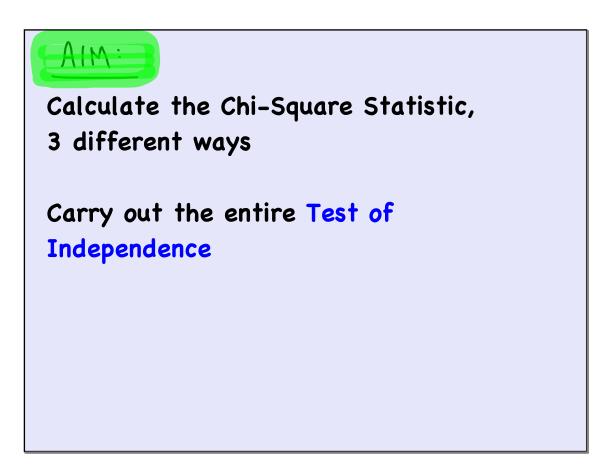
Observe Freque	dncies	Regular exercise		o regular ercise			
ereque	Male	112		104	للم	16	
	Female	96		88	18	84	
		えつめ		192	Ц	-00	
	ECTED	Regular exercise		No regula exercise	ır	sum	
EXP	EC ncies	$\frac{216\times208}{400}$ \doteqdot 1	12.3	$\frac{216 \times 192}{400} \doteqdot 1$	03.7	216	
fre	ECTED quen ^{Cles} Female	$\frac{184\times208}{400} \doteq 0$		$\frac{184 \times 192}{400} \doteq 3$		184	
	sum	208		192		400	

If the chi square value that we calculate is big enough, then we can establish a:


linkage between two variables

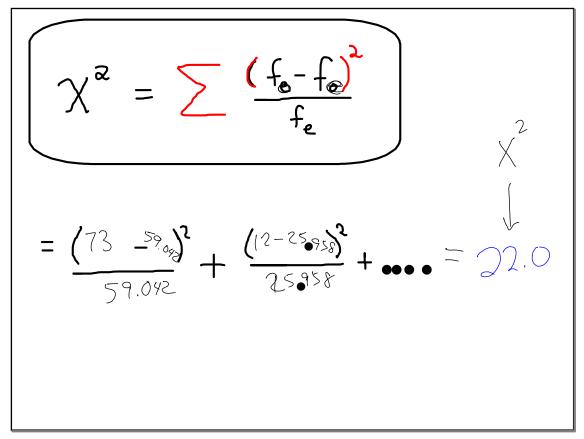

association between to variables


relationship between the variables


If the variables in this example are, indeed, associated, then gender <u>might</u> have an effect on regular exercise but just being associated or linked does not prove causation.

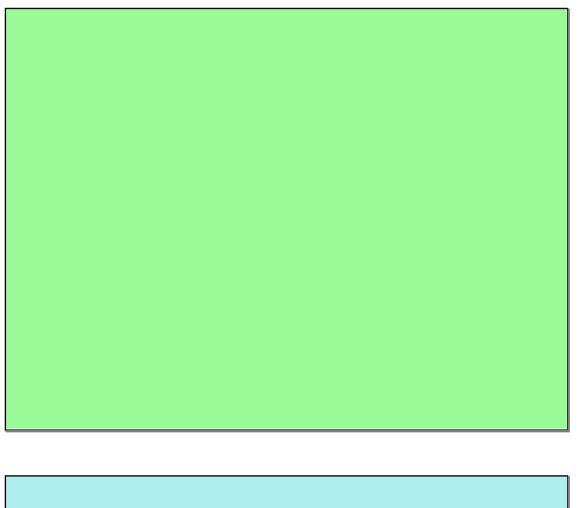
What you can say is.....

Before we go on to a new situation we need to practice calculating X^2 by using the formula itself.


For this we'll continue to use the same example from yesterday

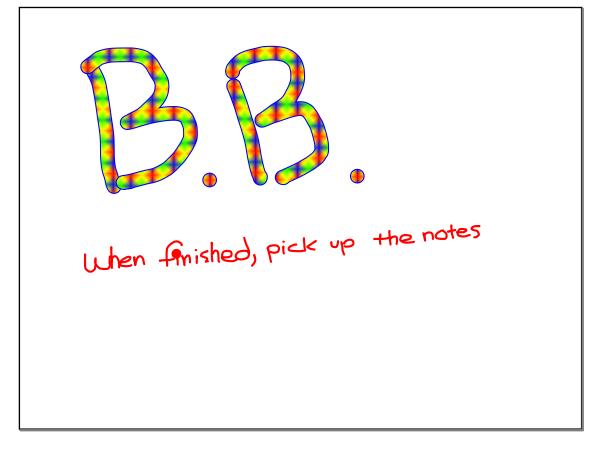
Once the expected cell frequencies are computed, it is convenient to enter them into the original table as shown below. The expected frequencies are in parentheses.

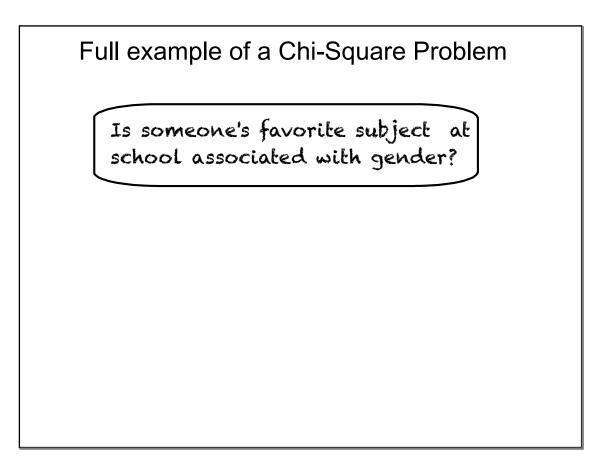
	Graduated	Failed to Graduate	Total
Experimental	73 (59.042)	12 (25.958)	85
Control	43 (56.958)	39 (25.042)	82
Total	116	51	167


Observed frequencies		Graduated	Failed to Graduate	Total
Obsoluencies	Experimental	73	12	85
frequein	Control	43	39	82
	Total	116	51	167
			Failed to	
(d		Graduated	Failed to Graduate	Total
Expected frequencies	Experimental	59.042	25959	85
frequencies	Control	56-948	25.042	82
1101	Total	116	51	167

a	ternat			2	$\chi^{a} = \sum \frac{(f_{e} - f_{e})}{f_{e}}$	<u>)</u>
	L	Lz	L3		٦٩	
	ſ	(d	$\left(\begin{array}{c} L_{1}-L_{2}\end{array}\right)^{2}$			
	73	59.042				
	12	25,958				
	43	56.958				
	39	52.045				
			22.0 A	Z ² .		
				/		

We find the Chi Squared value by putting the values from the table of observed values and the table of expected values into the calculator. a. Choose MATRIX and go to EDIT b. Make sure your matrix is the right size c. Enter your Observed values in Matrix A d. Choose STAT and go to TESTS e. Scroll down to x²-Test and press ENTER f. Choose Calculate. g. Your expected values can now also be found in Matrix B


- a. Choose MATRIX and go to EDIT
- b. Make sure your matrix is the right size
- c. Enter your Observed values in Matrix A
- d. Choose STAT and go to TESTS
- e. Scroll down to x²-Test and press ENTER
- f. Choose Calculate.
- g. Your expected values can now also be found in Matrix B



We'll step back and just observe example of the whole process

(ppt: Chi Square ppt)

Chi-Square Test of Independence.pptx

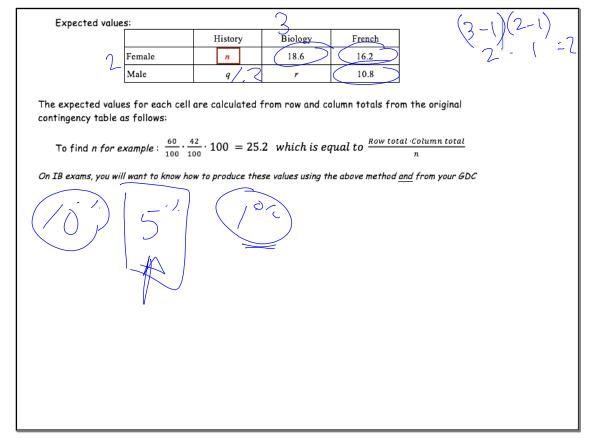
Chi Square Day 2

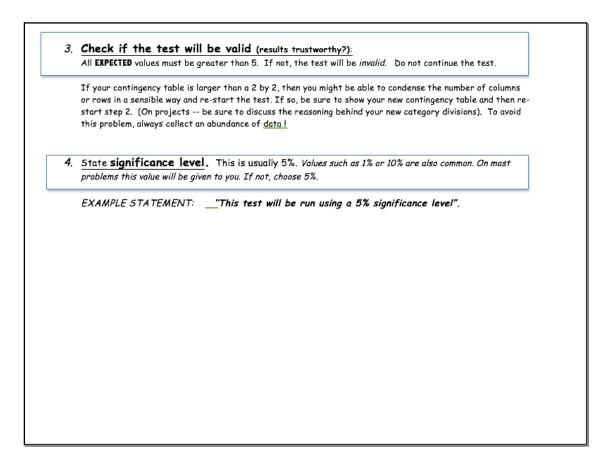
October 02, 2017

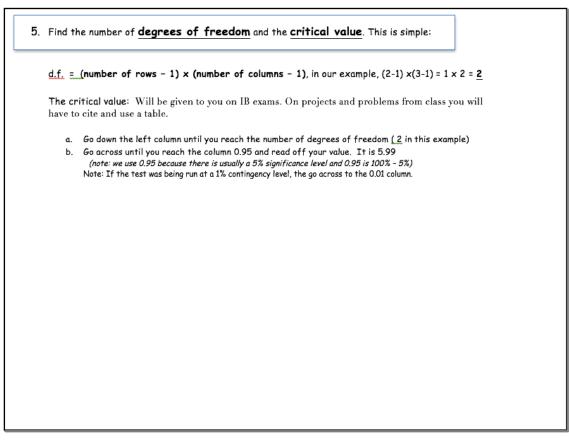
ollow	The Chi Squared Test of Independ. (using the χ^2 statistic) the steps below if performing the Chi-Square Test of Independence for a project or for an assignment. <u>Make a Contingency Table and State the Null Hypothesis</u> . Place the data into a contingency table showing the respective observed frequencies. (must be integers)
lote:	The term <i>correlation</i> is not appropriate to use with this test or with categorical data.
	A. using the χ^2 statistic B. Using a probability value
ssoci	iated then they are independent of one another). The test does <u>not</u> prove causation. <i>There</i> wo ways to run the test:
his t	The Chi-Squared Test of Independence

State a Null Hypothesis (H_{\scriptscriptstyle 0}) and an Alternative Hypothesis (H_{\scriptscriptstyle 1}).

Ho: Favorite subject is independent of gender.


H1: <u>Favorite</u> subject and gender are **associated** (or you can say <u>Favorite</u> subject and gender are <u>not</u> independent). Note: Being associated does <u>not</u> mean one variable **causes** the other variable to happen.


Then, show a Contingency Table


	History	Biology	French	
Female	22	20	18	
Male	20	11	9	


Chi Square Day 2

October 02, 2017

Critical values of	the χ^2 distributi	on					
				signifi	aance	2 lev	el
de fr	eedom	N p	10%	5%		1%	
			2.706	3.841	5.024	6.635	7.879
		v = 1	4.605	5.991	7.378	9.210	10.597
		2	6.251	7.815	9.348	11.345	12.838
			7.779	9.488	11.143	13.277	14.860
		4	9.236	11.070	12.833	15.086	16.750
		6	10.645	12.592	14.449	16.812	18.548
		7	12.017	14.067	16.013	18.475	20.278
		8	13.362	15.507	17.535	20.090	21.955
·		9	14.684	16.919	19.023	21.666	23.589
		10	15.987	18.307	20.483	23.209	25.188
		10	17.275	19.675	21.920	24.725	26.757
		12	18.549	21.026	23.337	26.217	28.300
			19.812	22.362	24.736	27.688	29.819
		13	21.064	23.685	26.119	29.141	31.319
		14	22.307	24.996	27.488	30.578	32.801
		16	23.542	26.296	28.845	32.000	34.267
		10	20.042	20.270			0.7.710

degree of freedom	No.	ci	- 2/4		10%	
freedom	p	10%	5%		1	
	v=1	2.706	3.841	5.024	6.635	7.879
	2	4.605	5.991	7.378	9.210	10.597
	3	6.251	7.815	9.348	11.345	12.838
	4	7.779	9.488	11.143	13.277	14.860
	5	9.236	11.070	12.833	15.086	16.750
	6	10.645	12.592	14.449	16.812	18.548
	7	12.017	14.067	16.013	18.475	20.27
	8	13.362	15.507	17.535	20.090	21.95
	9	14.684	16.919	19.023	21.666	23.58
	10	15.987	18.307	20.483	23.209	25.18
	10	10100		A1 000	24 725	26 75

6. State the <i>rejection inequality</i>				
	"If χ^2 > 5.99 , then I will reject \underline{H}_0 "			
the next step) is greate between the expected	ll reject the null hypothesis if the chi-square statistic (that you calculate on er than the critical value from the table. (This means the differences and observed values are large enough to reject independence. If not, you ypothesis if the chi-square statistic is not greater than the critical value.			
7. Coloulate the Chi Coursed (
 Calculate the Chi Squared S You need to know how to calculate the guestion. 	STATISTIC e this statistic using the formula and by your GDC, depending on			

a) By "formula" (you may at times need to show a process with the formula)

$$X^2 = \sum \frac{(f_o \cdot f_e)^2}{f_e}$$
 where

 $f_o = observed frequency (a natural number)$

 $f_e = expected \ frequency \ (a \ natural \ number)$

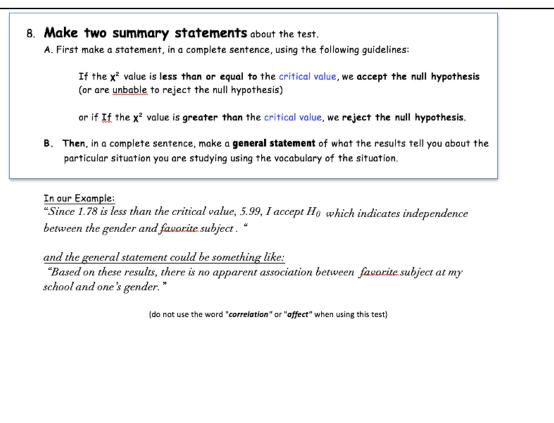
1. For each cell in the table, subtract the *expected value* from the *observed value* and square the difference. Divide this by the expected value.

2. Find the sum, which is the Chi-Square statistic.

3. On a project this process needs to be shown clearly.

Chi Square Day 2

b) With your GDC:
a. Choose MATRIX and go to EDIT
b. Make sure your matrix is the right size
c. Enter your Observed values in Matrix A
d. Choose STAT and go to TESTS
e. Scroll down to x²-Test and press ENTER
f. Choose Calculate.
g. Your expected values can now also be found in Matrix B

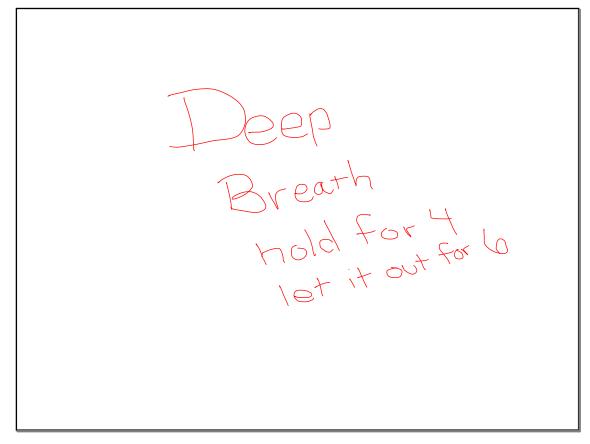

......Ok, in our favorite subject/gender example: X² = 1.78

Note when working on projects: If the degree of freedom is 1 (in other words for *all 2 by 2 tables*) the **Yates Continuity Correction** <u>must</u> be used. In this case, do <u>not</u> use the statistic from your calculator. It will be invalid. here is the revised formula.

If df = 1, we use

$$\chi^2_{calc} = \sum rac{(|f_o-f_e|-0.5)^2}{f_e}$$

where $|f_o - f_e|$ is the absolute value or modulus of $f_o - f_e$



Note:

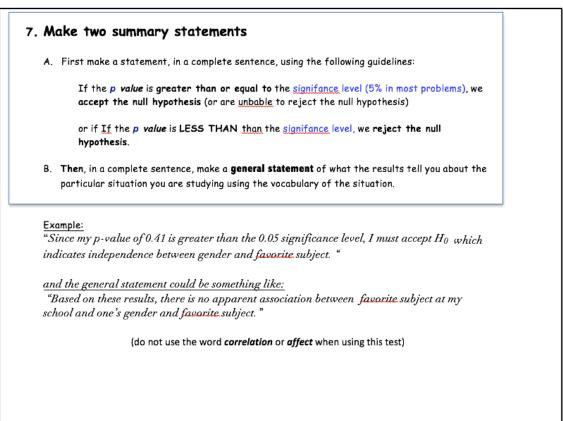
Be cautious of the wording of your conclusions during those times when you reject the Null Hypothesis, H_0 . The Chi Square Test of Independence does not prove anything. It supplies evidence to support if two categorical variables are associated with each other or not. If our example had had the opposite result, the general statement might read as:

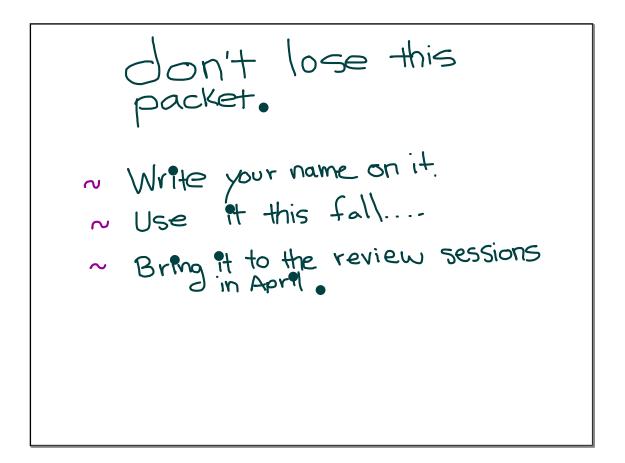
"Since 9.72 is greater than the critical value, 5.99, I reject H_0 which indicates that favorite subject and gender are <u>not</u> independent."

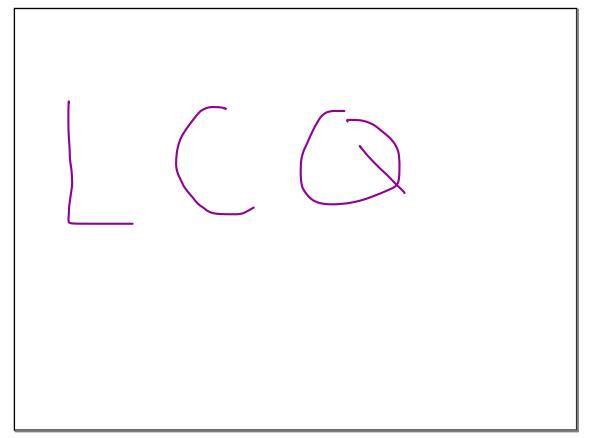
These results supply evidence to support the possibility that favorite subject and gender of the students I studied are associated.

B. The Chi Squared Test of Indep. (using Probability)

You may be asked to perform the test using **probability** instead of the Chi-Square statistic. In that case, you will follow steps 1 through 4. But continue with the following steps instead:


5. State the *rejection inequality*


"If the p-value is <u>less than</u> the significance level <u>"(</u>5% or 0.05 for many cases), then I will reject H₀.


6. Calculate the *p*-value.

This step must be done on a calculator. Follow the same calculator steps as if you are calculating the Chi-square statistic.

"From my <u>GDC</u>___p = 0.41 "

