

Later in the period

- you will get your test back
- There will be an LCQ on some calculus basics so far.

Questions on HW ?

EXERCISE 20A.2

1 For the travel graph given alongside, estimate the average speed:
a in the first 4 seconds
b in the last 4 seconds
c in the 8 second interval.

EXERCISE 20A. 2

1
a $0.1 \mathrm{~m} \mathrm{~s}^{-1}$
b $0.9 \mathrm{~m} \mathrm{~s}^{-1}$
c $0.5 \mathrm{~m} \mathrm{~s}^{-1}$

$$
f(x)=\frac{\partial x}{x^{2}}-\frac{3}{x^{2}}
$$

1 ($4-2 x^{2}$	(9)
$f^{\prime}(x)=$	$f^{\prime}(x)=$

(h) $x^{3}+3 x^{2}+4 x-1$

$$
f^{\prime}(x)=
$$

$7 \quad y=4 x-\frac{3}{x}$

$$
\frac{d y}{d x}=
$$

interpretation

$$
\begin{aligned}
& 5_{p .}^{5^{13}} 4 e \quad y=\frac{x^{2}-4}{x^{2}} \quad \text { at } x=4 \\
& y=\frac{x^{2}}{x^{2}}-\frac{4}{x^{2}}=1-x^{-2} \\
& \frac{d y}{d x}=
\end{aligned}
$$

Review Question:

$$
\begin{aligned}
f(-2)= & (-2)^{3}-2(-2) & f^{\prime}(x) & =3 x^{2}-2 \\
& =-8+4 & f^{\prime}(-2) & =3(-2)^{2}-2 \\
& =-4 & & =10 \\
& (-2,-4) & &
\end{aligned}
$$

Check on calculator

$$
\begin{aligned}
& f(-2)=(-2)^{3}-2(-2)=-4 \\
& \text { gradient function } f^{\prime}(x)=3 x^{2}-2 \\
& \text { gradient at } x=2 \quad f^{\prime}(-2)=3(-2)^{2}-2=10
\end{aligned}
$$

$$
(-2,-4)
$$

point on graph

$$
f(-2)=(-2)^{3}-2(-2)=-4 \quad \therefore(-2,-4) \text { is the point of } \begin{gathered}
\text { tangency on the curve }
\end{gathered}
$$

gradient function ${ }^{\prime}(x)=3 x^{2}-2$
gradient at $x=-2 \quad f^{\prime}(-2)=3(-2)^{2}-2=10$
Interpretation: 10 is the slope (gradient) of the tangent at the point oftangency $(-2,-4)$
or
10 is the instantaneous rate of change at at $x=-2$

Calculus Day 3 Objectives

1. Find points on curves that have specific gradients.
2. Find the equation of a tangent line at a specific points on a graph.

Need Notes 3.0

Example A
At what point on the graph of $y=3 x^{2}-2 x^{\prime}+6$ does the tangent have a gradient of 10)
a) find dererative (it tells us all gradients)

$$
\begin{gathered}
f^{\prime}(x)=6 x-2 \\
10 \\
10=6 x-2 \\
12=6 x \\
x=2
\end{gathered}
$$

Example 1
Find the equation of the tangent (line) to $f(x)=2 x^{2}-3 x$ at $x=2$

1st -Make a Sketch

3rd-Find the gradient of the tangent at $\mathrm{x}=2$

$$
\operatorname{POT}(2,2) \quad \begin{array}{ll}
f^{\prime}(x)=4 x-3 \\
& f^{\prime}(2)=4(2)-3=5
\end{array}
$$

2nd - Find the point of tangency on the original curve

$$
\begin{gathered}
\operatorname{POT}\left(2,2_{0}^{T}\right) \\
2(2)^{2}-3(2) \\
=2
\end{gathered}
$$

4th-Using your point \& slope, write the equation

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =5(x-2) \\
y-2 & =5 x-10 \\
y & =+9 x-8
\end{aligned}
$$

Example 2
Find the equation of the tangent to $f(x)=5 x^{-1}+x$ at $x=1$ $=\frac{5}{x}+x$

Gradient at point of tangency

$$
\begin{aligned}
f(x) & =5 x^{-1}+x^{\prime} \\
f^{\prime}(x) & =5(-1) x^{-2}+1 \\
f^{\prime}(x) & =-5 x^{-2}+1 \\
& =-\frac{5}{x^{2}}+1
\end{aligned}
$$

Equation

$$
y-6=-4(x-1)
$$

Your calculator can "draw" tangent anywhere you wish.
At the same time, the equation will be given.
which is a great way to check your answer.

Example 3
Find the equation of the tangent to $f(x)=2 x^{3}-4 x+1$ at $x=-\frac{1}{2}$ and find the point at which this tangent meets the curve again.

$$
f^{\prime}\left(\frac{1}{2}\right)=6\left(\frac{1}{2}\right)^{2}-4 \cdot-26
$$

$$
\begin{array}{r}
y-2.75=-2.5(x+.5) \\
y-2.75=-2.5 x-1.25 \\
+2.75 r \\
y=-2.5 x+1.5 \\
y=I(1)-1)
\end{array}
$$

Brain Break

Take an LCQ while I pass your lost Test back (yo vil need a ruler of)
some kind

Assignment
Calculus Packet:
page. 574.... 5
page 574.... 5
page 575.... 10, 12, 14
page 578..... ide, 2b

