SOLVE for y
a). $5 x-2 y=8$
b). $x y+3 x=2$
(31) $f(x)=x^{2}-2 x-3$
a) Find the vertex by averaging the x-int.

$$
\begin{aligned}
& 0=x^{2}-2 x-3 \\
& 0=(x-3)(x+1) \\
& 1 \\
& x=3 x+1 \\
& X_{\text {Avg }}=\frac{3+-1}{2}=\frac{2}{2}=1
\end{aligned}
$$

b) by Completing the Square

$$
f(x)=x^{2}-2 x-3
$$

c)

$$
\begin{aligned}
& \text { choose } \\
& f(x)=1 x^{2}+\frac{4 x+2}{x}+\frac{x^{2}-\frac{5}{2}}{\frac{5}{2}}+2 \\
& f(x)+\frac{25}{4}=\frac{5}{2} \times \frac{25}{4} \\
& f(x)+\frac{25}{4}=\left(x+\frac{5}{2}\right)^{2}+2
\end{aligned}
$$

$$
\frac{5}{2} x \cdot \frac{5 x}{2}
$$

BECAUSE ITS WEDNESDAY...
PLEASE PICK UP HW SOLUTIONS AT THE FRONT OF THE ROOM.

CHECK YOUR ANSWERS AND THEN WILL GO OVER ANY QUESTIONS AT THE END OF THE PERIOD.
a). $5 x-2 y=8$

$$
\begin{aligned}
& \quad+2 y+2 y \\
& 5 x=2 y+8 \\
& -8 \\
& \frac{5 x-8}{2}=\frac{2 y}{2} \\
& y=\frac{5 x-8}{2} \\
& y=\frac{5 x}{2}-\frac{8}{2}
\end{aligned} \quad y=\frac{5 x}{2}-4
$$

b). $x y+3 x=2$

$$
-3 x-3 x
$$

$$
\frac{x y}{x}=\frac{2-3 x}{x}
$$

$$
y=\frac{2-3 x}{x}
$$

$$
\begin{aligned}
& y=\frac{\partial}{x}-\frac{3 y}{x} \\
& y=\frac{2}{x}-3
\end{aligned}
$$

strategies to solve a variety of both
systems of equations

$$
\begin{array}{lr}
1 \frac{x}{x}=1 & \text { Quick Note } \\
\frac{2 x}{x}=2 \\
\frac{x^{2}}{x}=x & \\
\frac{(2-x) \times(2-x)}{x}=(2-x)
\end{array}
$$

when...

SOLVING BY REWRITING

given a situation
\Rightarrow rewrite

| $\substack{\text { New } \\ \text { situation }}$ | given a
 situation\rightarrow rewrite |
| :---: | :---: | :---: |\rightarrow solve

rewrite

$$
\begin{aligned}
& \left.\frac{x-3 x}{x}(x-1)+\frac{2 x}{(x-1} d x-1\right)=\frac{5-x}{x} x(x-1) \\
& (x-3)(x-1)+2 x=(5-x)(x-1) \\
& x^{2}-3 x-1 x+3+2 x=6 x-x^{2}-5 \\
& x^{2}-2 x+3=6 x-x^{2}-5 \\
& -6 x+5+x^{2}-6 x+x^{2}+5 \\
& 2 x^{2}-8 x+8=0
\end{aligned}
$$

are the functions equivalent?

$$
y=(x-3)(x-5) \quad y=2(x-3)(x-5)
$$

do they have the same

Roots
x-value that makes the y-value go to zero

INPUT \longrightarrow OUTPUT $=0$

$$
\begin{array}{ll}
\begin{array}{ll}
y=(x-3)(x-5) \\
=2-3)(x-5) & y=2(x-3)(x-5) \\
(x-3) \\
-13) & \\
(x-5)=0 & (x-3)=0 \\
+5 & +5 \\
x=3 & \\
x=5 & \text { ROOTS }
\end{array} \\
x= &
\end{array}
$$

THING
in your own words,
briefly...
\boldsymbol{k} state $\&$ explain 2 or 3 strategies
you could use to rewrite an
equation to make it easier to solve ?
\hbar what are the possible ways we've learned to solve quadratic equations?

ASSIGNMENT:

$.41 b, 45-46,49-50,53-54$
for a
do 38f as well

$$
\begin{aligned}
& \text { Learning Objective: } \\
& \text { TSWBAT solve both equations and } \\
& \text { systems of equations by using } \\
& \text { different methods for rewriting. The } \\
& \text { student will state \& explain } 2 \text { or } 3 \\
& \text { strategies used for rewriting an } \\
& \text { expression as well as explain the } \\
& \text { two ways to solve equations and } \\
& \text { systems of equations. }
\end{aligned}
$$

