Questions on Homework


No Warm Up, but have your homework out

Exponent Review
Boot camp

Manipulating Powers

| 1) $\left(a^{x}\right)^{y}=a^{x y}$ | 4) $(a b)^{x}=a^{x} b^{x}$ | 7) $\frac{1}{a^{-x}}=a^{x}$ |
| :--- | :--- | :--- |
| 2) $a^{x} \cdot a^{y}=a^{x+y}$ | 5) $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$ |  |
| 3) $\frac{a^{x}}{a^{y}}=a^{x-y}$ | 6) $a^{-x}=\frac{1}{a^{x}}$ |  |

Simplify each expression.
Example: $\left(x^{2}\right)^{4}=x^{2 \cdot 4}=x^{8}$

1. $x^{4} \cdot x^{2}$
use the $2^{\text {nc }}$ law



$$
\begin{array}{ll}
\text { 8. } \begin{array}{ll}
\left(2 c^{2}\right)^{3} & \\
2^{3} \cdot\left(c^{2}\right)^{3}=8 c^{6} & n^{4} \cdot n^{4} \cdot n^{6} n^{4} \\
n^{8} \cdot n^{2}
\end{array}=\frac{n^{10}}{n^{10}}=\square \\
\begin{array}{ll}
\text { 10. } 4 a^{5} \cdot 3 a^{3} & \text { 11. }\left(\frac{v^{4}}{3}\right)^{4} \cdot\left(\frac{5}{v}\right)^{2} \\
12 a^{8} & v^{v^{2}} \frac{v^{4}}{8^{4}} \cdot \frac{25}{x^{2}} \\
& =\frac{25 v^{2}}{81}
\end{array}
\end{array}
$$

12. $\left(x^{-2}\right)^{2}$

$$
\begin{aligned}
& X^{-4} \\
& =\frac{1}{x^{4}}
\end{aligned}
$$

13. $\left(\frac{2}{x}\right)^{-1}$

check remainder of assignment

Today's Goal:

1. Write recursive formulas for sequences.
2. Exponential function Basics

Explicit formulas can generate any term in the sequence.


Recursive formulas show how to produce the next term from a known term.

What is the sequence
doing over and over again?

Recursive formulas
are used in computer programming

Notation
$\mathbf{t}(\mathbf{n})$ or $t_{n}$
the current term
$\mathrm{t}(\mathrm{n}+1)$
the next term after that term
t(n-1)
proceeding term

Pick up the handout

Question \#1 Write a sequence formula for each:


20, 23, 26, 29........
$45,40,35,30 \ldots \ldots$.
$6,12,24,48, \ldots \ldots .$.
$90,30,10$, $\qquad$

## Question \#2

In a new sequence, what does the following mean? $\quad t(32)=1800$

## Question \#3

Determine whether $\mathbf{5 3 0}$ is a term of the sequence $\boldsymbol{t}(\boldsymbol{n})=\boldsymbol{8}+\boldsymbol{6} \boldsymbol{n}$

## Question \#4

Given the recursive sequence below, list the first 5 terms of the sequence

$$
\left\{\begin{array}{l}
t_{1}=3 \\
t_{n+1}=5 t_{n}-1
\end{array}\right.
$$



## Question \#6 Mystery sequence <br> clues: $\quad t(5)=32$ and $t(11)=56$

find the arithmetic sequence

$$
\frac{-1}{(1)},-,-\frac{32}{(5)}-1-,-,-1, \frac{56}{(11)}
$$

Consider taping these notes into yours.

notes
Exponential Functions

Appendex B

Pull out your Reference Sheet

$$
\begin{aligned}
\text { Exponential Functions } & \boldsymbol{y}=\boldsymbol{a} \boldsymbol{b}^{\boldsymbol{x}}, \text { where } \boldsymbol{b} \text { is the multiplier, } \boldsymbol{a} \text { is the starting value } \\
\text { for \% situations: } & \$ 200 \text { increasing by } 15 \% \rightarrow y=200(1+.15)^{t}=\mathbf{2 0 0 ( 1 . 1 5 ) ^ { t }} \\
& \$ 700 \text { DECREASING by } 15 \% \rightarrow y=700(1-.15)^{t}=\mathbf{2 0 0}(\mathbf{0 . 8 5})^{t}
\end{aligned}
$$


$\square$
\(\left.\left.$$
\begin{array}{ll}y=1(2)^{x} & \longleftrightarrow \\
y=1(123)^{x} & \longleftrightarrow \\
y=1(0.35)^{x} & \longrightarrow \\
y=1\left(\frac{2}{3}\right)^{x} & \sim\end{array}
$$\right\} \begin{array}{l}Exponential <br>
Growth <br>
when <br>

b>1\end{array}\right\}\)\begin{tabular}{l}

| Exponential |
| :--- |
| Decay |
| $0<b<1$ | <br>

\end{tabular}

$$
\begin{aligned}
& y=1(2)^{x} \\
& y=1(1.23)^{x}
\end{aligned}
$$



$$
\begin{aligned}
& y=1(0.35)^{x} \\
& y=1\left(\frac{2}{3}\right)^{x}
\end{aligned}
$$



$\rightarrow$ initial value of an exponential situation
$\rightarrow y$-intercept of its graph
$\square$
Sketch $y=2(3)^{x}+5$
$-\ldots-\ldots-\ldots$

* Sketch $y=8\left(\frac{2}{3}\right)^{x}-4$


Find the $y$-intercept analytically.

$$
y=3(2)^{x}
$$

Graph and find the y-intercept.

Seeing your test

$$
\begin{aligned}
& v=1 \text { mark } \\
& \checkmark v=2 \text { marks } \\
& \checkmark v v=3 \text { marks } \\
& v v v=4 \text { marks }
\end{aligned}
$$

etc

SS = See the Solutions


You did the correct thing on this problem even though you used the incorrect answer from the previous problem. $\left(\begin{array}{l}\text { (So am not marking this } \\ \text { problem wrong }\end{array}\right.$

| $(6)^{2}$ | $(-6)^{2}$ | $-(6)^{2}$ | $-6^{2}$ |
| :--- | :--- | :--- | :--- |
| 36 | 36 | -36 | -36 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

$$
\begin{aligned}
& (x-4)^{2}=25 \\
& \downarrow \\
& \text { NOT } \\
& x^{2}-16=25 \\
& (x)
\end{aligned}
$$

$$
2 \text { day }
$$

## Assignment Appendix

A....24, 56, 78, 83, 99, 100

