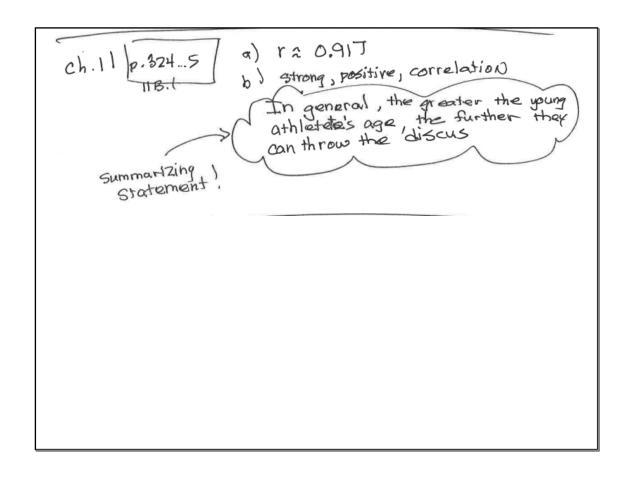
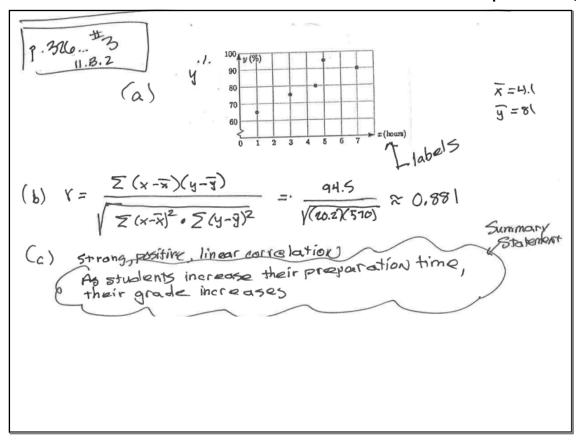
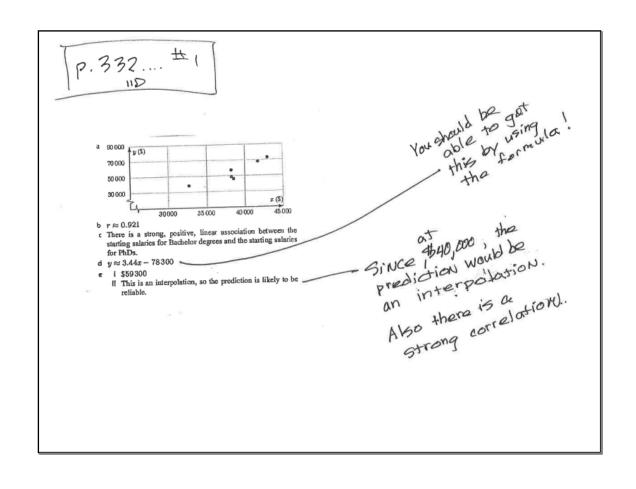
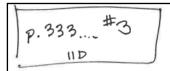
- Pick up the solutions. Use only pens of a different color to mark your HW.
- Let me know if there are questions.

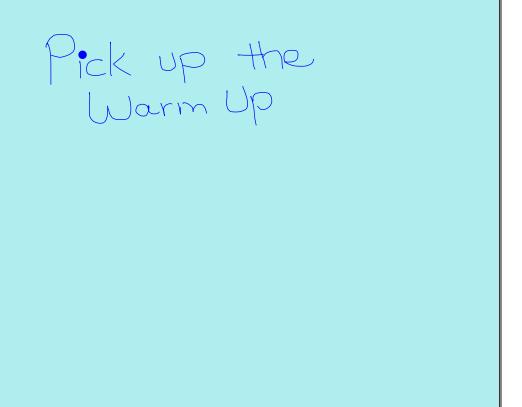








- a  $\tau \approx -0.924$
- b There is a strong negative, linear correlation between the petrol price and the number of customers.
- $\varepsilon y \approx -4.27x + 489$
- d gradient ≈ -4.27, for every 1 cent per litre increase in the price of petrol, a service station will lose 4.27 customers.
- e -5.10 customers
- f It is impossible to have a negative number of customers. This extrapolation is not valid.



## WARM UP

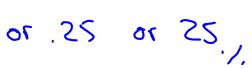
The probability of flipping a head when a coin is tossed is 0.5 or 50%

What is the probability of flipping two coins and getting a head on each?

Now we'll flip one coin and roll one die. What is the probability of flipping a tail and getting a six?

The probability of flipping a head when a coin is tossed is 0.5 or 50%

What is the probability of flipping two coins and getting a head on each?



Now we'll flip one coin and roll one die. What is the probability of flipping a tail and getting a six?

|              | Graduated | Failed to<br>Graduate | Total |
|--------------|-----------|-----------------------|-------|
| Experimental | 73        | 12                    | 85    |
| Control      | 43        | 39                    | 82    |
| Total        | 116       | 51                    | 167   |

The probability of being in the <u>experimental</u> group is \_\_\_\_\_

The probability of <u>someone graduating</u> in the sample is \_\_\_\_\_

The probability of being BOTH in the experimental group and a graduate is:

|              | Graduated | Failed to<br>Graduate | Total |
|--------------|-----------|-----------------------|-------|
| Experimental | 73        | 12                    | 85    |
| Control      | 43        | 39                    | 82    |
| Total        | 116       | 51                    | 167   |

The probability of being in the <u>experimental</u> group is \_\_\_\_\_

The probability of <u>someone graduating</u> in the sample is \_\_\_\_\_

The probability of being BOTH in the experimental group and a graduate is:

$$\frac{73}{167} \approx 43.7^{\prime\prime}$$





Now that we know the probability of being in both groups is  $\frac{43.7\%}{}$ , how many students would we expect to be a graduate from the experimental group?

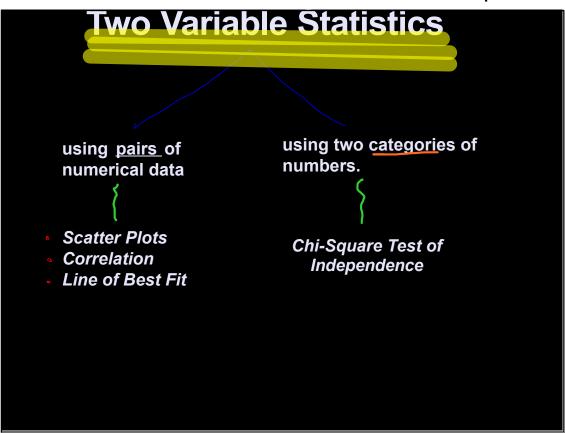


# IB Math Studies SL Statistical Applications

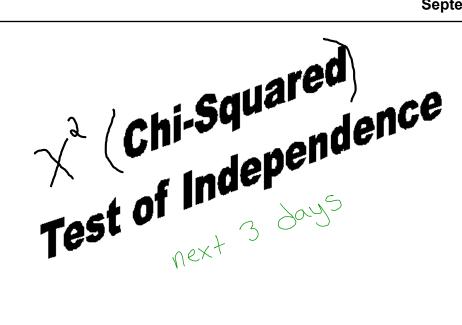
- The Normal Distribution
- Correlation
- Regression Line
- X<sup>2</sup> test

#### Types of statistics

- 1. <u>Descriptive</u> (which *summarize some characteristic* of a sample)
  - Measures of central tendency Mean, Median, Mode
  - Measures of dispersion Range, Interquartile Range, Standard Deviation
  - Measures of skewness
- 2. <u>Inferential</u> (which test for significant *differences* between groups and/or significant *relationships* among variables within the sample
  - t-ratio, chi-square, beta-value



We don't use the term
"correlation"
with data that is
categorical.



> The chi-square test of independence is one of the most frequently used hypothesis test in the social sciences because it can be used with variables at any level of measurement.

+0000

# Part 1 Background and Skills

I will be giving you a hand out with some partially filled notes.

### **Contingency Tables**

Satisfied in job

Completed University

YES NO

YES 272 618

NO 238 292

|              | Wore hat and sunscreen | Wore hat or sunscreen | Wore neither |
|--------------|------------------------|-----------------------|--------------|
| Sunburnt     | 3                      | 5                     | 13           |
| Not sunburnt | 36                     | 17                    | 1            |
| sum          |                        |                       |              |

|               | Likes chicken | Dislikes chicken | sum |
|---------------|---------------|------------------|-----|
| Likes fish    |               |                  | 60  |
| Dislikes fish |               |                  | 40  |
| sum           | 75            | 25               | 100 |

#### Another Example

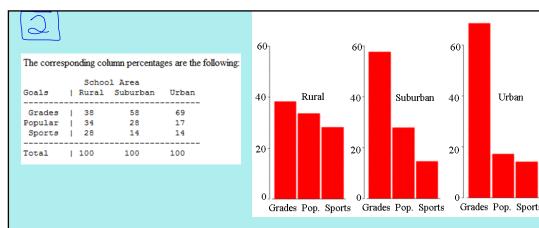
In the the following data set, students in grades 4-6 were asked whether good grades, athletic ability, or popularity was most important to them.

A two-way contingency table separating the students by grade and by choice of most important factor is shown:

Is there an association between the type of school area and the students' choice of good grades, athletic ability, or popularity as most important?

A two-way table for student goals and school area appears as follows:

| School Area |    |       |          |       |       |  |
|-------------|----|-------|----------|-------|-------|--|
| Goals       | -1 | Rural | Suburban | Urban | Total |  |
|             |    |       |          |       |       |  |
| Grades      |    | 57    | 87       | 24    | 168   |  |
| Popular     |    | 50    | 42       | 6     | 98    |  |
| Sports      | 1  | 42    | 22       | 5     | 69    |  |
|             |    |       |          |       |       |  |
| Total       | 1  | 149   | 151      | 35    | 335   |  |



Sometimes these differences in can be "eyeballed" by observing split bar graphs...

From the table and corresponding graphs, *it appears* that the emphasis on grades increases as the school areas become more urban, while the emphasis on popularity decreases.

To be sure, we can use a **Statistic** to measure if there is truly a relationship (or association) between the two variables.

In the last example, the statistic would tell us if there is a LINK between <u>living area</u> and <u>emphasis on grades</u>.

is a <u>statistic</u> that measures

the difference between values that we observe in a contingency table and values that we would expect to see given the overall totals.

Age of voter

|         | 18 to 35 | 36 to 59 | 60+ |
|---------|----------|----------|-----|
| Party A | 85       | 95       | 131 |
| Party B | 168      | 197      | 173 |

Contingency tables are used to examine the relationship between two qualitative or categorical variables.

For example, consider the hypothetical experiment on the effectiveness of early childhood intervention programs.

|              | Graduated | Failed to<br>Graduate | Total |
|--------------|-----------|-----------------------|-------|
| Experimental | 73        | 12                    | 85    |
| Control      | 43        | 39                    | 82    |
| Total        | 116       | 51                    | 167   |

|              | Graduated | Failed to<br>Graduate | Total |
|--------------|-----------|-----------------------|-------|
| Experimental | 73        | 12                    | 85    |
| Control      | 43        | 39                    | 82    |
| Total        | 116       | 51                    | 167   |

In the experimental group, 73 of 85 students graduated from high school. the control group, only 43 of 82 students graduated.

The table shows that people in the experimental condition were more likely to graduate than were subjects in the control condition.

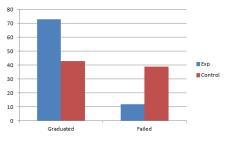
Thus, the <u>column</u> a person is in (graduated or failed to graduate) is *contingent upon* (depends on) the <u>row</u> the person is in (experimental or control)

|              | Graduated | Failed to<br>Graduate | Total |
|--------------|-----------|-----------------------|-------|
| Experimental | 73        | 12                    | 85    |
| Control      | 43        | 39                    | 82    |
| Total        | 116       | 51                    | 167   |

If the columns are <u>not</u> contingent on the rows, then the rows then the column frequencies are <u>independent</u> from each other.

(which means no association or link between the two variables)

|              | Graduated | Failed to<br>Graduate | Total |
|--------------|-----------|-----------------------|-------|
| Experimental | 73        | 12                    | 85    |
| Control      | 43        | 39                    | 82    |
| Total        | 116       | 51                    | 167   |







The **TEST** of whether the columns are contingent on the rows is called the

# Chi square test of independence.

When running the test, the assumption (or null hypothesis) is always made that:

there is <u>no</u> relationship between row and column frequencies.



The first task in computing the chi square test of independence is to compute the expected frequency for each cell with the assumption of independence.

In other words, we are assuming that the two variables (graduation and intervention) are *independent* from each other, or not linked.

| 8            |           |                       |       |  |  |
|--------------|-----------|-----------------------|-------|--|--|
|              | Graduated | Failed to<br>Graduate | Total |  |  |
| Experimental | 73        | 12                    | 85    |  |  |
| Control      | 43        | 39                    | 82    |  |  |
| Total        | 116       | 51                    | 167   |  |  |

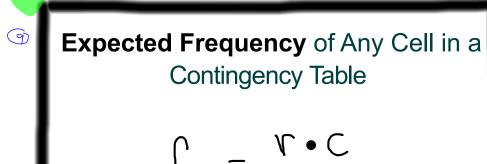
**probability** of being both experimental AND Graduated

•

|   |              | Graduated | Failed to<br>Graduate | Total |
|---|--------------|-----------|-----------------------|-------|
|   | Experimental |           |                       | 85    |
|   | Control      |           |                       | 82    |
| , | Total        | 116       | 51                    | 167   |

#### **Expected frequency**

of people being both experimental AND 
Graduated



$$\int_{e} = \frac{1}{V \cdot C}$$

$$f_e = expected freq$$
  
where,  $r = row total$ 

c = column total

n = total number of observations

(0)

Once the expected cell frequencies are computed, it is convenient to enter them into the original table as shown below. The expected frequencies are in parentheses.

|              | Graduated      | Failed to<br>Graduate | Total |
|--------------|----------------|-----------------------|-------|
| Experimental | 73<br>(59.042) | 12<br>(25.958)        | 85    |
| Control      | 43<br>(56.958) | 39<br>(25.042)        | 82    |
| Total        | 116            | 51                    | 167   |



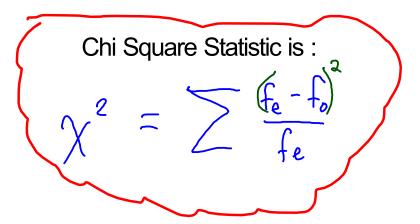


Observed frequencies

|              | Graduated | Failed to<br>Graduate | Total |
|--------------|-----------|-----------------------|-------|
| Experimental | 73        | 12                    | 85    |
| Control      | 43        | 39                    | 82    |
| Total        | 116       | 51                    | 167   |

Expected frequencies

|                         | Graduated |                |     |
|-------------------------|-----------|----------------|-----|
| Experimental            | 59.042    | 25958          | 85  |
| Experimental<br>Control | 56948     | <b>15. 642</b> | 82  |
| Total                   | 116       | 51             | 167 |



is a <u>statistic</u> that measures the difference between observed values and expected values

The next time we meet we will learn how to calculate this statistic in 3 different ways.

**Project Stuff** 

-today you will get a copy of the Project Scoring Criteria

-and evaluate a project

(Wealth and Obsesity)

for Criteria A and B

#### Assignment in the Ch 11 packet:

read pp. 334-335

do p.336..... 1E.1 abcd — in each problem, be sure to show at least one sample calculation

do p. 333.... #5 on parts b and d, show the calculation by hand.