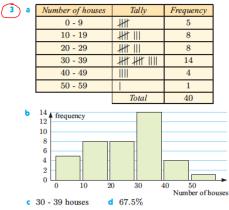
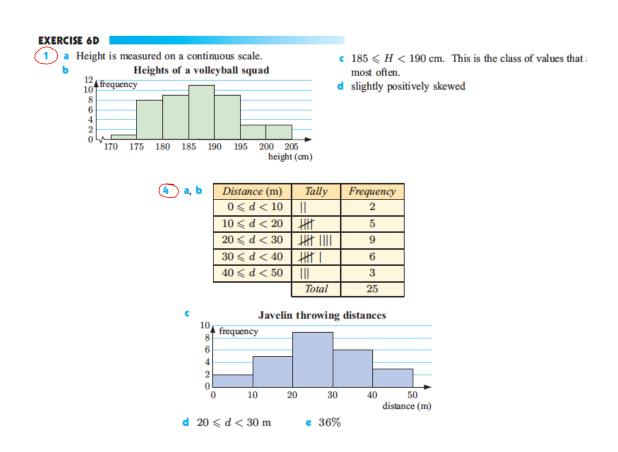
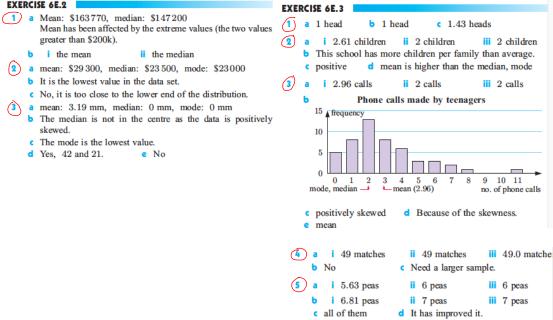

Answers to Ch. 6 HH Text (2014)

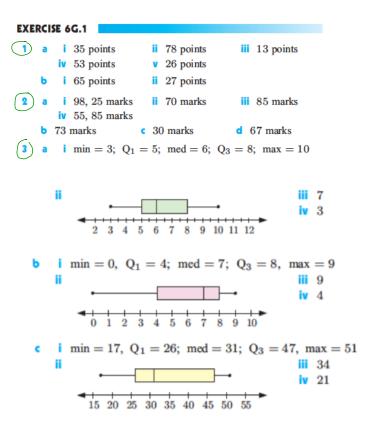


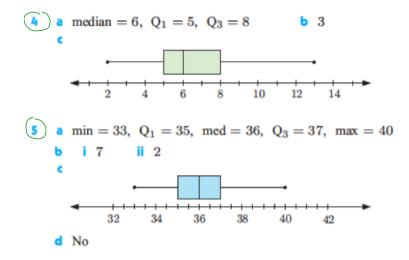

EXERCISE 6C

1 a	People waiting	Tally	Frequency	Rel. Freq.	
	0 - 9		2	0.067	
	10 - 19	₩1	6	0.200	
	20 - 29	####1	11	0.367	
	30 - 39	₩1	7	0.233	
	40 - 49		4	0.133	
		Total	30		
b đ	b 2 days $c \approx 36.7\%$ e 20 - 29 people d 12 frequency 0 10 20 30 40 people waiting				

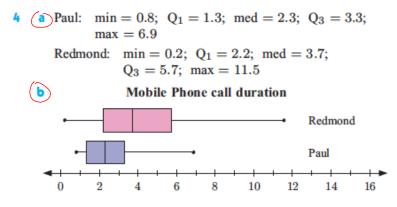
a 37 **b** 40 - 49 employees **c** negatively skewed **d** \approx 37.8%

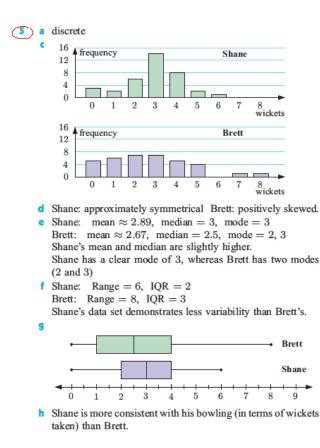

No, only that it was in the interval 50 - 59 employees.




EXERCISE 6E.1
1 a 1 cup b 2 cups c 1.8 cups 2 9
3 a i 5.61 ii 6 iii 6 b i 16.3 ii 17 iii 18
c i 24.8 ii 24.9 iii 23.5
a data set A: 6.46, data set B: 6.85
b data set A: 7, data set B: 7
• The data are the same except for the last value, which pushes
the mean of set B up.
d 7 is the middle value in both data sets. It is not affected by
extreme values.
5 Ruth (164)
6 a i Pies: 67.1, Pasties: 53.6
Pies: 69, Pasties: 52
b Pies, higher mean (more sold), higher median (higher data values)
7 a Bus: mean = 39.7 , median = 40.5 ,
Tram: mean ≈ 49.1 , median = 49
b Tram has higher mean and median, but there are more bus
trips per day and more people travel by bus in a day, so bus
is more popular.
(8) a 44 points b 44 points c 40.2 points
d increase, 40.3 points
(9) \$185604 10 3144 km 11 17.25 goals 12 $x = 15$
(13)a = 5 14 37 15 14.8 16 6, 12 17 7, 9

EXERCISE 6E.2

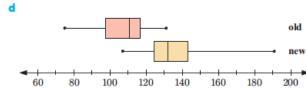

EXERCISE 6E.4 (1)31.7 (2) **a** 70 **b** \approx 411 000 L $c \approx 5870 \text{ L}$ (3) a 11.5 points b i 11.3 points ii 11.4 points c ii is closer to the actual mean than i. Smaller class intervals give better estimates. (4) 90.1 km h⁻¹ **5** 768 m² (6) a 125 people **b** 119 marks < 3/25 d 137 EXERCISE 6F (1) **a** i 6 ii $Q_1 = 4, Q_3 = 7$ 7 iv 3 **b** i 17.5 ii $Q_1 = 15, Q_3 = 19$ iii 14 iv 4 **c** i 24.9 ii $Q_1 = 23.5, Q_3 = 26.1$ iii 7.7 iv 2.6 (2) a median = 2.45 min, $Q_1 = 1.45$ min, $Q_3 = 3.8$ min **b** range = 5.2 minutes, IQR = 2.35 minutes **c** i 2.45 min ii 3.8 min iii 0, 5.2, 5.2 3 a 6 **b** 28 **c** 15 **d** 12 **e** 21 22 **9** 9 4 a i 124 cm ii $Q_1 = 116 \text{ cm}, \ Q_3 = 130 \text{ cm}$ **b** i 124 cm ii 130 cm c i 29 cm ii 14 cm d 14 cm 5 a i 7 peas ii 6 peas iii 5 peas iv 7 peas v 2 peas **b** i 10 peas ii 7 peas iv 8 peas 6 peas 2 peas c The fertiliser does improve the yield of peas.



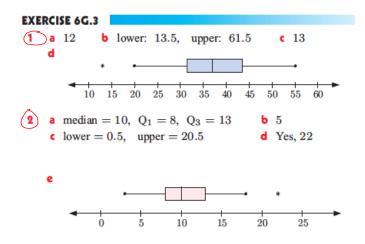
EXERCISE 6G.2				
1 a	Statistic minimum Q1 median Q3 maximum	Year 9 1 5 7.5 10 12	Year 12 6 10 14 16 17.5	 i Year 9: 11, Year 12: 11.5 ii Year 9: 5, Year 12: 6
c i cannot tell ii true since Year 9 $Q_1 <$ Year 12 min. a Friday: min = \$20, $Q_1 =$ \$50, med = \$70, $Q_3 =$ \$100, max = \$180 Saturday: min = \$40, $Q_1 =$ \$80, med = \$100, $Q_3 =$ \$140, max = \$200				
 b i Friday: \$160, Saturday: \$160 ii Friday: \$50, Saturday: \$60 3 a i Class 1 (96%) ii Class 1 (37%) iii Class 1 b 18 c 55 d i 25% ii 50% e i slightly positively skewed ii negatively skewed f class 2, class 1 				

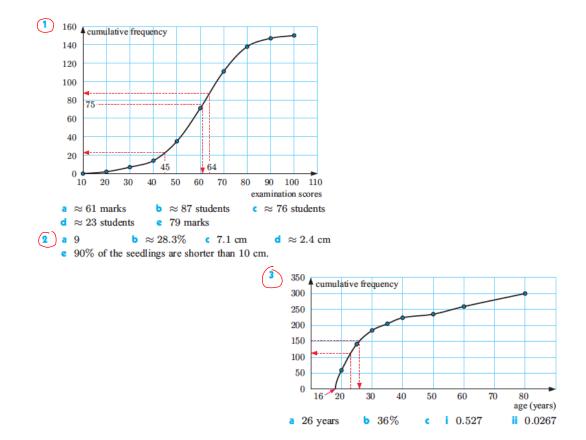
h

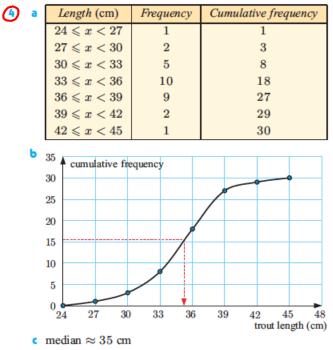
• Both are positively skewed (Redmond's more so than Paul's). Redmond's phone calls were more varied in duration.

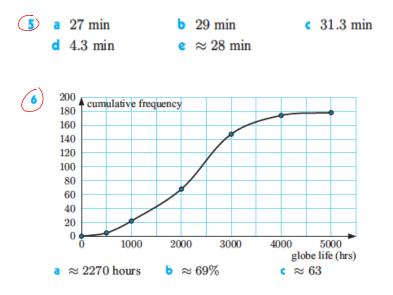


a continuous (the data is measured)


- C Old: mean = 107, median = 110.5, range = 56, IQR = 19, min = 75, max = 131 New: mean = 134, median = 132, range = 84,
 - IQR = 18.5, min = 107, max = 191


The 'new' type of light globe has a higher mean and median than the 'old' type.


The IQR is relatively unchanged going from 'old' to 'new', however, the range of the 'new' type is greater, suggesting greater variability.


e Old type: negatively skewed, New type: positively skewed
 f The 'new' type of light globes do last longer than the old type. Each number in the 5-number summary is at least 20% greater in the 'new' type. The manufacturer's claim appears to be valid.

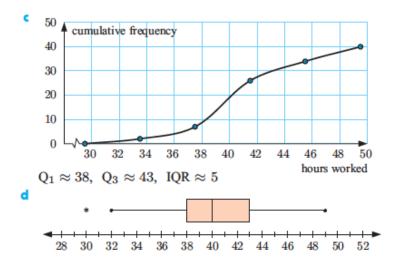
d median = 34.5. Median from graph is a good approximation.

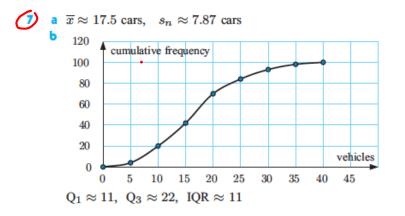
7 a $19.5 \leq l < 20.5$

Ь	Foot length (cm)	Frequency	Cumulative frequency		
	$19.5 \leqslant l < 20.5$	1	1		
	$20.5 \leqslant l < 21.5$	1	2		
	$21.5 \leqslant l < 22.5$	0	2		
	$22.5 \leqslant l < 23.5$	3	5		
	$23.5 \leqslant l < 24.5$	5	10		
	$24.5 \leqslant l < 25.5$	13	23		
	$25.5 \leqslant l < 26.5$	17	40		
	$26.5 \le l < 27.5$	7	47		
	$27.5 \leqslant l < 28.5$	2	49		
	$28.5 \leqslant l < 29.5$	0	49		
$29.5 \leqslant l < 30.5$		1	50		
c	60 cumulative freque	ency			
			0		
	40	1			
	30				
	20	ø			
	20				
	10	8			
	0				
	20 22 2	24 26	28 30 32		
d i 25.2 cm ii 18 people foot length (cm)					

EXERCISE 61.1

(1) a 1.49 **b** 4.73 (2) mean = 55 L, standard deviation ≈ 10.9 L (3) mean ≈ 1.69 kg, standard deviation ≈ 0.182 kg a $\overline{x} = 169, s \approx 6.05$ **b** $\overline{x} = 174, s \approx 6.05$ (4 c The distribution has simply shifted by 5 cm. The mean increases by 5 cm and the standard deviation remains the same. (5) a $\overline{x} = 1.01$ kg; s = 0.17**b** $\overline{x} = 2.02 \text{ kg}; s = 0.34$ Doubling the values doubles the mean and standard deviation. **a** 0.809 b 2.8, from volunteer F c 0.150

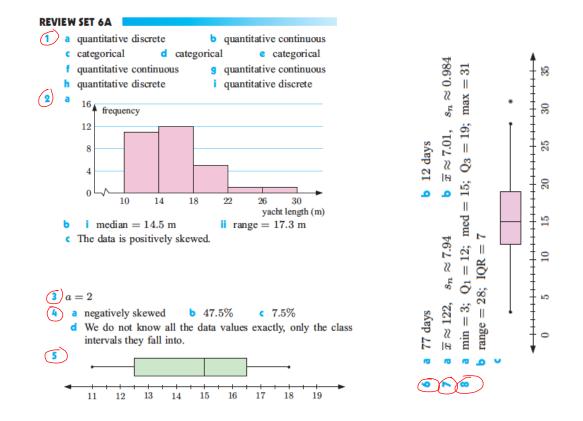

d the extreme value greatly increases the standard deviation

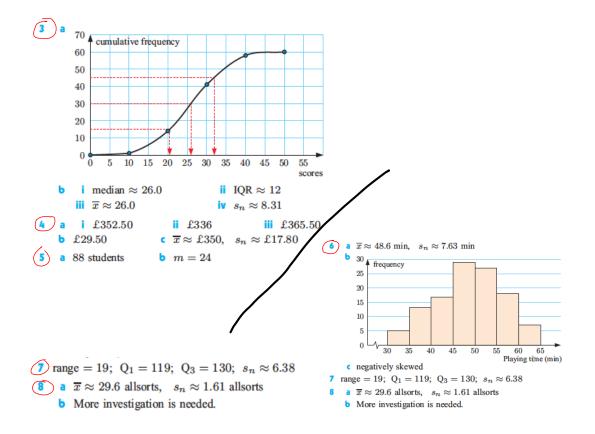

EXERCISE 61.2

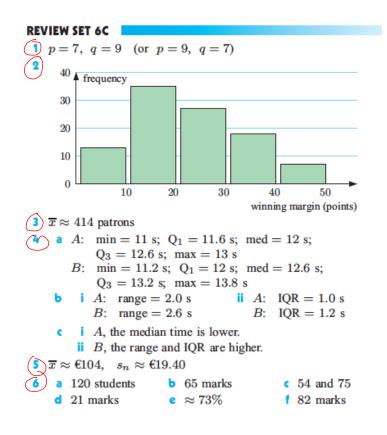
(1) $\overline{x} \approx 1.72$ children, $s_n \approx 1.67$ children (2) $\overline{x} \approx 14.5$ years, $s_n \approx 1.75$ years (3) $\overline{x} = 45$ clients, $s_n \approx 3.28$ clients

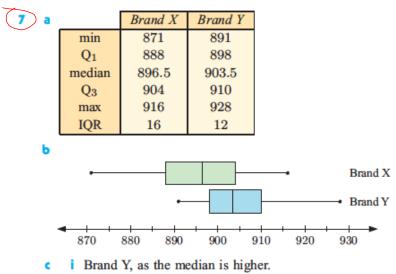
(4) $\overline{x} \approx 48.3 \text{ cm}, s_n \approx 2.66 \text{ cm}$ (5) $\overline{x} \approx $390.30, s_n \approx 15.87

a x̄ ≈ 40.4 hours s_n ≈ 4.23 hours
b x̄ = 40.6 hours s_n ≈ 4.10 hours The mean increases slightly, the standard deviation decreases slightly. These are good approximations.




EXERCISE 61.3


1 a Sample A


- b Sample A: mean = 8, Sample B: mean = 8
 c Sample A: s_n = 2, Sample B: s_n ≈ 1.06 Sample B's standard deviation is smaller than Sample A's. The graph shows the data to be less 'spread out' in Sample B.
- **2** a Andrew: $\overline{x} = 25$, $s_n \approx 4.97$ b Andrew Brad: $\overline{x} = 30.5$, $s_n \approx 12.6$
- a Rockets: mean = 5.7, range = 11 Bullets: mean = 5.7, range = 11
 - **b** We suspect the Rockets, they have two zeros.
 - **c** Rockets: $s_n = 3.9 \leftarrow$ greater variability
 - Bullets: $s_n \approx 3.29$
 - d Standard deviation, as it takes into account all data values.
- 4 a No, because of random variation
 - **b i** the sample mean \overline{x}
 - ii the sample standard deviation s_n
 - c Less variability in the volume of soft drink per can.

REVIEW SET 6B					
 a quantitative continous b categorical c categorical d quantitative continous e quantitative continous f quantitative discrete g categorical a minimum = 64.6 m, maximum = 97.5 m i mean ≈ 81.1 m ii median ≈ 83.1 m 					
c, d	Distance (m)	Tally	Frequency		
	$60 \leq d < 65$		1		
	$65 \leqslant d < 70$	11	3		
	$70 \leqslant d < 75$	III	5		
	$75 \leqslant d < 80$	1	2		
	$80 \le d < 85$		8		
	$85 \leqslant d < 90$	##1	6		
	$90 \leqslant d < 95$		3		
	$95 \leqslant d < 100$	iii ii	2		
	$50 \leqslant a \leqslant 100$	Total	30		
		10101	- 50		
° 8,	C				
6	frequency				
2					
0 l	$-\sqrt{60 \ 65 \ 70}$	75 80	85 90 9	5 100	
distance thrown (m)					

ii Brand X, as the IQR is lower, so less variations.