| M.  | ar | ทศ   | 2 . |  |
|-----|----|------|-----|--|
| 1.4 | uı | 6 17 | 1 . |  |

| - 6 | $\neg$ | _         | 4 | _ |   |
|-----|--------|-----------|---|---|---|
| - 1 | J      | $\approx$ |   | ല | • |
|     |        |           |   |   |   |

# CHALLENGE!

## 14.4 Radioactivity





There are three main types of radiation that involve the decay of the nucleus of an atom:

- alpha radiation ( $\alpha$ ): release of a helium-4 nucleus (two protons and two neutrons). We can represent helium-4 using isotope notation: <sup>4</sup>He. The top number, 4, represents the mass number, and the bottom number represents the atomic number for helium, 2.
- beta radiation (β): release of an electron.
- **gamma radiation** ( $\gamma$ ): release of an electromagnetic wave.

| <b>⊜</b> Electron | Alpha decay   | Beta decay    | Gamma decay  |
|-------------------|---------------|---------------|--------------|
| Proton            |               |               | as Down      |
| Neutron           |               |               | Gamma<br>ray |
| Protons           | Decrease by 2 | Increase by 1 | Unchanged    |
| Neutrons          | Decrease by 2 | Decrease by 1 | Unchanged    |



#### Half-life

The time it takes for half of the atoms in a sample to decay is called the half-life. Four kilograms of a certain substance undergo radioactive decay. Let's calculate the amount of substance left over after 1, 2, and 3 half-lives.

- After one half-life, the substance will be reduced by half, to 2 kilograms.
- After two half-lives, the substance will be reduced by another half, to 1 kilogram.
- After three half-lives, the substance will be reduced by another half, to 0.5 kilogram.

So, if we start with a sample of mass m that decays, after a few half-lives, the mass of the sample will be:

| Number of half-lives | Mass               | left            |
|----------------------|--------------------|-----------------|
| 1                    | $\frac{1}{2^1}m =$ | $\frac{1}{2}m$  |
| 2                    | $\frac{1}{2^2}m =$ | $\frac{1}{4}m$  |
| 3                    | $\frac{1}{2^3}m =$ | $\frac{1}{8}m$  |
| 4                    | $\frac{1}{2^4}m =$ | $\frac{1}{16}m$ |

### Page 2 of 2

## PRACTICE >--



1. The decay series for uranium-238 and plutonium-240 are listed below. Above each arrow, write "a" for alpha decay or "b" for beta decay to indicate which type of decay took place at each step.

- 2. Fluorine-18 ( ${}^{18}_{9}$ F) has a half-life of 110 seconds. This material is used extensively in medicine. The hospital laboratory starts the day at 9 a.m. with 10 grams of  ${}^{18}_{9}$ F.
  - a. How many half-lives for fluorine-18 occur in 11 minutes (660 seconds)?
  - b. How much of the 10-gram sample of fluorine-18 would be left after 11 minutes?
- 3. The isotope  ${}^{14}_{6}$ C has a half-life of 5,730 years. What is the fraction of  ${}^{14}_{6}$ C in a sample with mass, m, after 28,650 years?
- '4. What is the half-life of this radioactive isotope that decreases to one-fourth its original amount in 18 months?